[1]
P.T. Anastas et al., Green chemistry: designing pchemistry for the environment. (1996): American Chemical Society.
Google Scholar
[2]
J.F. Brennecke, and E.J. Maginn, Ionic liquids: Innovative fluids for chemical processing. AIChE Journal, (2001). 47(11): pp.2384-2389.
DOI: 10.1002/aic.690471102
Google Scholar
[3]
S. Carda-Broch, A. Berthod, and D.W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem, (2003). 375(2): pp.191-9.
DOI: 10.1007/s00216-002-1684-1
Google Scholar
[4]
N. Gathergood, M.T. Garcia, and P.J. Scammells, Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry, (2004). 6(3): pp.166-175.
DOI: 10.1039/b315270g
Google Scholar
[5]
R.G. Kalkhambkar, S.N. Waters, and K.K. Laali, Highly efficient synthesis of amides via Ritter chemistry with ionic liquids. Tetrahedron Letters, (2011). 52(8): pp.867-871.
DOI: 10.1016/j.tetlet.2010.12.028
Google Scholar
[6]
A. Yokozeki et al., Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. The Journal of Physical Chemistry B, (2008). 112(51): pp.16654-16663.
DOI: 10.1021/jp805784u
Google Scholar
[7]
M. Antonietti et al., Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie International Edition, (2004). 43(38): pp.4988-4992.
DOI: 10.1002/anie.200460091
Google Scholar
[8]
R.J. Bernot et al., Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environmental Toxicology and Chemistry, (2005). 24(1): pp.87-92.
DOI: 10.1897/03-635.1
Google Scholar
[9]
C. Pretti et al., Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicology and Environmental Safety, (2009). 72(4): pp.1170-1176.
DOI: 10.1016/j.ecoenv.2008.09.010
Google Scholar
[10]
D. Zhao, Y. Liao, and Z. Zhang, Toxicity of ionic liquids. CLEAN–Soil, Air, Water, (2007). 35(1): pp.42-48.
DOI: 10.1002/clen.200600015
Google Scholar
[11]
J. Ranke et al., Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety, (2004). 58(3): pp.396-404.
DOI: 10.1016/s0147-6513(03)00105-2
Google Scholar
[12]
C. -W. Cho et al., The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, (2008). 71(1): pp.166-171.
DOI: 10.1016/j.ecoenv.2007.07.001
Google Scholar
[13]
R.J. Bernot, E.E. Kennedy, and G.A. Lamberti, Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environmental toxicology and chemistry / SETAC, (2005). 24(7): pp.1759-1765.
DOI: 10.1897/04-614r.1
Google Scholar
[14]
S. Başer et al., Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere, (2003). 51(6): pp.469-474.
DOI: 10.1016/s0045-6535(03)00033-x
Google Scholar
[15]
C. Pretti et al., Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chemistry, (2006). 8(3): pp.238-240.
DOI: 10.1039/b511554j
Google Scholar
[16]
S. -H. Wang et al., Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environmental Toxicology, (2010). 25(3): pp.243-250.
DOI: 10.1002/tox.20496
Google Scholar
[17]
M. Matzke et al., Design of Inherently Safer Ionic Liquids: Toxicology and Biodegradation, in Handbook of Green Chemistry. (2010), Wiley-VCH Verlag GmbH & Co. KGaA.
DOI: 10.1002/9783527628698.hgc069
Google Scholar
[18]
W.H. Organization, Principles and methods for evaluating the toxicity of chemicals. 1978: world Health Organization.
Google Scholar
[19]
R.J. Bernot et al., Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem, (2005). 24(1): pp.87-92.
DOI: 10.1897/03-635.1
Google Scholar
[20]
N. Papaiconomou et al., Physicochemical Properties of Hydrophobic Ionic Liquids Containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations. Journal of Chemical & Engineering Data, (2007). 52(3): pp.833-840.
DOI: 10.1021/je060440r
Google Scholar
[21]
P. Wasserscheid and H. Waffenschmidt, Ionic liquids in regioselective platinum-catalysed hydroformylation. Journal of Molecular Catalysis A: Chemical, (2000). 164(1): pp.61-67.
DOI: 10.1016/s1381-1169(00)00259-4
Google Scholar
[22]
G.L. Rebeiro and B.M. Khadilkar, Chloroaluminate Ionic Liquid for Fischer Indole Synthesis. Synthesis, (2001). 2001(03): pp.0370-0372.
DOI: 10.1055/s-2001-11441
Google Scholar
[23]
S.A. Arnautov, Electrochemical synthesis of polyphenylene in a new ionic liquid. Synthetic Metals, (1997). 84(1–3): pp.295-296.
DOI: 10.1016/s0379-6779(97)80758-8
Google Scholar
[24]
Yunus et al., Solubility of CO2 in pyridinium based ionic liquids. Chemical Engineering Journal, (2012). 189–190(0): pp.94-100.
DOI: 10.1016/j.cej.2012.02.033
Google Scholar
[25]
S. Zhao et al., An atom-efficient and practical synthesis of new pyridinium ionic liquids and application in Morita–Baylis–Hillman reaction. Ultrasonics Sonochemistry, (2008). 15(6): pp.955-959.
DOI: 10.1016/j.ultsonch.2008.02.011
Google Scholar