Ecotoxicity of Pyridinium Based Ionic Liquids: A Review

Article Preview

Abstract:

Ionic Liquids (ILs) are an exciting class of compounds with unique properties that make them attractive for industrial applications. Pyridinium-based ILs have been used in many applications, such as organic synthesis, electrochemical applications, biocatalysis, and polymerization. Although intensive information and data regarding to the physical and thermodynamic properties of ILs have been reported and continuously published, only limited data with regards to the toxicity and ecotoxicity of ILs were reported. Toxicity tests are conducted against many aquatic organisms such as: Guppy fish, Gold fish, and Zebra fish, besides many different strains of Microorganisms such as: Staphylococcus aureus, E. coli, and Salmonella typhi, and yet more research regarding the toxicity of ionic liquids is yet to be conducted to increase the toxicity profile for these valuable chemicals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-155

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.T. Anastas et al., Green chemistry: designing pchemistry for the environment. (1996): American Chemical Society.

Google Scholar

[2] J.F. Brennecke, and E.J. Maginn, Ionic liquids: Innovative fluids for chemical processing. AIChE Journal, (2001). 47(11): pp.2384-2389.

DOI: 10.1002/aic.690471102

Google Scholar

[3] S. Carda-Broch, A. Berthod, and D.W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem, (2003). 375(2): pp.191-9.

DOI: 10.1007/s00216-002-1684-1

Google Scholar

[4] N. Gathergood, M.T. Garcia, and P.J. Scammells, Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry, (2004). 6(3): pp.166-175.

DOI: 10.1039/b315270g

Google Scholar

[5] R.G. Kalkhambkar, S.N. Waters, and K.K. Laali, Highly efficient synthesis of amides via Ritter chemistry with ionic liquids. Tetrahedron Letters, (2011). 52(8): pp.867-871.

DOI: 10.1016/j.tetlet.2010.12.028

Google Scholar

[6] A. Yokozeki et al., Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. The Journal of Physical Chemistry B, (2008). 112(51): pp.16654-16663.

DOI: 10.1021/jp805784u

Google Scholar

[7] M. Antonietti et al., Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie International Edition, (2004). 43(38): pp.4988-4992.

DOI: 10.1002/anie.200460091

Google Scholar

[8] R.J. Bernot et al., Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environmental Toxicology and Chemistry, (2005). 24(1): pp.87-92.

DOI: 10.1897/03-635.1

Google Scholar

[9] C. Pretti et al., Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicology and Environmental Safety, (2009). 72(4): pp.1170-1176.

DOI: 10.1016/j.ecoenv.2008.09.010

Google Scholar

[10] D. Zhao, Y. Liao, and Z. Zhang, Toxicity of ionic liquids. CLEAN–Soil, Air, Water, (2007). 35(1): pp.42-48.

DOI: 10.1002/clen.200600015

Google Scholar

[11] J. Ranke et al., Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety, (2004). 58(3): pp.396-404.

DOI: 10.1016/s0147-6513(03)00105-2

Google Scholar

[12] C. -W. Cho et al., The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, (2008). 71(1): pp.166-171.

DOI: 10.1016/j.ecoenv.2007.07.001

Google Scholar

[13] R.J. Bernot, E.E. Kennedy, and G.A. Lamberti, Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environmental toxicology and chemistry / SETAC, (2005). 24(7): pp.1759-1765.

DOI: 10.1897/04-614r.1

Google Scholar

[14] S. Başer et al., Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere, (2003). 51(6): pp.469-474.

DOI: 10.1016/s0045-6535(03)00033-x

Google Scholar

[15] C. Pretti et al., Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chemistry, (2006). 8(3): pp.238-240.

DOI: 10.1039/b511554j

Google Scholar

[16] S. -H. Wang et al., Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environmental Toxicology, (2010). 25(3): pp.243-250.

DOI: 10.1002/tox.20496

Google Scholar

[17] M. Matzke et al., Design of Inherently Safer Ionic Liquids: Toxicology and Biodegradation, in Handbook of Green Chemistry. (2010), Wiley-VCH Verlag GmbH & Co. KGaA.

DOI: 10.1002/9783527628698.hgc069

Google Scholar

[18] W.H. Organization, Principles and methods for evaluating the toxicity of chemicals. 1978: world Health Organization.

Google Scholar

[19] R.J. Bernot et al., Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem, (2005). 24(1): pp.87-92.

DOI: 10.1897/03-635.1

Google Scholar

[20] N. Papaiconomou et al., Physicochemical Properties of Hydrophobic Ionic Liquids Containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations. Journal of Chemical & Engineering Data, (2007). 52(3): pp.833-840.

DOI: 10.1021/je060440r

Google Scholar

[21] P. Wasserscheid and H. Waffenschmidt, Ionic liquids in regioselective platinum-catalysed hydroformylation. Journal of Molecular Catalysis A: Chemical, (2000). 164(1): pp.61-67.

DOI: 10.1016/s1381-1169(00)00259-4

Google Scholar

[22] G.L. Rebeiro and B.M. Khadilkar, Chloroaluminate Ionic Liquid for Fischer Indole Synthesis. Synthesis, (2001). 2001(03): pp.0370-0372.

DOI: 10.1055/s-2001-11441

Google Scholar

[23] S.A. Arnautov, Electrochemical synthesis of polyphenylene in a new ionic liquid. Synthetic Metals, (1997). 84(1–3): pp.295-296.

DOI: 10.1016/s0379-6779(97)80758-8

Google Scholar

[24] Yunus et al., Solubility of CO2 in pyridinium based ionic liquids. Chemical Engineering Journal, (2012). 189–190(0): pp.94-100.

DOI: 10.1016/j.cej.2012.02.033

Google Scholar

[25] S. Zhao et al., An atom-efficient and practical synthesis of new pyridinium ionic liquids and application in Morita–Baylis–Hillman reaction. Ultrasonics Sonochemistry, (2008). 15(6): pp.955-959.

DOI: 10.1016/j.ultsonch.2008.02.011

Google Scholar