[1]
Z. Liang, M. Marshall, A.L. Chaffee, CO2 adsorption based separation by metal organic framework (Cu–BTC) versus zeolite (13X), Energy Fuels, 23 (2009) 2785 – 2789.
DOI: 10.1021/ef800938e
Google Scholar
[2]
F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe, R. Chirone, CO2 capture performance of HKUST-1 in a sound assisted fluidized bed, Chem. Eng. J., 239 (2014) 75 – 86.
DOI: 10.1016/j.cej.2013.11.005
Google Scholar
[3]
J.M. Vicent–Luna, J.J. Gutiérrez–Sevillano, J.A. Anta, S. Calero, Effect of room temperature ionic liquids on CO2 separation by a Cu–BTC metal-organic framework, J. Phys. Chem. C., 117 (2013) 2076 – 20768.
DOI: 10.1021/jp407176j
Google Scholar
[4]
Q. Yang, C. Xue, C. Zhong, J.F. Chen, Molecular simulation of separation of CO2 from flue gases in Cu–BTC metal organic framework, AlChE J., 53 (2007) 2832 – 2840.
DOI: 10.1002/aic.11298
Google Scholar
[5]
Y. Zhao, M. Seredych, J. Jagiello, Q. Zhong, T.J. Bandosz, Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide, Chem. Eng. J., 239 (2014) 399 – 407.
DOI: 10.1016/j.cej.2013.11.037
Google Scholar
[6]
Y. Zhao, M. Seredych, Q. Zhong, T.J. Bandosz, Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature, ACS Appl. Mater. Interfaces, 5 (2013) 4951 – 4959.
DOI: 10.1021/am4006989
Google Scholar
[7]
M.M. Peng, D.K. Kim, A. Aziz, K.R. Back, U.J. Jeon, H.T. Jang, CO2 adsorption of metal organic framework material Cu–BTC via different preparation routes, Comm. Com. Inf. Sci., 341 (2012) 244 – 251.
DOI: 10.1007/978-3-642-35248-5_34
Google Scholar
[8]
D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron, 64 (2008) 8553 – 8557.
DOI: 10.1016/j.tet.2008.06.036
Google Scholar
[9]
H. Dathe, E. Peringer, V. Roberts, A. Jentys, J.A. Lercher, Metal organic frameworks based on Cu2+ and benzene-1, 3, 5-tricarboxylate as host for SO2 trapping agents, Comptes. Rendus. Chimie., 8 (2005) 753 – 763.
DOI: 10.1016/j.crci.2004.10.018
Google Scholar
[10]
W.L. Meng, G.X. Liu, T. Okamura, H. Kawaguchi, Z.H. Zhang, W.Y. Sun, N. Ueyama, Syntheses, crystal structures, and magnetic properties of novel copper (II) complexes with the flexible bidentate ligand 1-bromo-3, 5-bis (imidazol-1-ylmethyl) benzene, Cryst. Growth. Des., 6 (2006).
DOI: 10.1021/cg060304i
Google Scholar
[11]
Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesium based metal organic framework, J. Colloid Interface Sci., 353 (2011) 549 – 556.
DOI: 10.1016/j.jcis.2010.09.065
Google Scholar
[12]
J.A. Hyatt, Liquid and supercritical carbon dioxide as organic solvents, J. Org. Chem., 49 (1984) 5097 – 5101.
DOI: 10.1021/jo00200a016
Google Scholar
[13]
C.T. Chiou, D.E. Kile, Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter, Environ. Sci. Technol., 28 (1994) 1139 – 1144.
DOI: 10.1021/es00055a026
Google Scholar
[14]
A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal organic frameworks, J. Am. Chem. Soc., 128 (2006) 3494 – 3495.
DOI: 10.1021/ja058213h
Google Scholar