Fine Structural Analysis of Solvent Activated Cu-BTC for Carbon Dioxide Capture

Article Preview

Abstract:

Metal organic frameworks (MOFs) are presently under substantial investigation due to their properties and high potential as new class of porous material for carbon dioxide (CO2) capture. Experimentally, Cu-BTC crystalline frameworks with diameter of approximately 6-13 μm were found. The washing method of Cu-BTC was examined using three different solvent, (a) ethanol and water (1:1), (b) water, and (c) acetone to improve the BET surface area. These materials display approximately type I isotherms with no hysteresis and saturation. CO2 adsorption capacities study shows that acetone wash material can store about 5.98 mmolg-1of CO2 at 25oC and 1.2 bar.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-212

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Liang, M. Marshall, A.L. Chaffee, CO2 adsorption based separation by metal organic framework (Cu–BTC) versus zeolite (13X), Energy Fuels, 23 (2009) 2785 – 2789.

DOI: 10.1021/ef800938e

Google Scholar

[2] F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe, R. Chirone, CO2 capture performance of HKUST-1 in a sound assisted fluidized bed, Chem. Eng. J., 239 (2014) 75 – 86.

DOI: 10.1016/j.cej.2013.11.005

Google Scholar

[3] J.M. Vicent–Luna, J.J. Gutiérrez–Sevillano, J.A. Anta, S. Calero, Effect of room temperature ionic liquids on CO2 separation by a Cu–BTC metal-organic framework, J. Phys. Chem. C., 117 (2013) 2076 – 20768.

DOI: 10.1021/jp407176j

Google Scholar

[4] Q. Yang, C. Xue, C. Zhong, J.F. Chen, Molecular simulation of separation of CO2 from flue gases in Cu–BTC metal organic framework, AlChE J., 53 (2007) 2832 – 2840.

DOI: 10.1002/aic.11298

Google Scholar

[5] Y. Zhao, M. Seredych, J. Jagiello, Q. Zhong, T.J. Bandosz, Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide, Chem. Eng. J., 239 (2014) 399 – 407.

DOI: 10.1016/j.cej.2013.11.037

Google Scholar

[6] Y. Zhao, M. Seredych, Q. Zhong, T.J. Bandosz, Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature, ACS Appl. Mater. Interfaces, 5 (2013) 4951 – 4959.

DOI: 10.1021/am4006989

Google Scholar

[7] M.M. Peng, D.K. Kim, A. Aziz, K.R. Back, U.J. Jeon, H.T. Jang, CO2 adsorption of metal organic framework material Cu–BTC via different preparation routes, Comm. Com. Inf. Sci., 341 (2012) 244 – 251.

DOI: 10.1007/978-3-642-35248-5_34

Google Scholar

[8] D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron, 64 (2008) 8553 – 8557.

DOI: 10.1016/j.tet.2008.06.036

Google Scholar

[9] H. Dathe, E. Peringer, V. Roberts, A. Jentys, J.A. Lercher, Metal organic frameworks based on Cu2+ and benzene-1, 3, 5-tricarboxylate as host for SO2 trapping agents, Comptes. Rendus. Chimie., 8 (2005) 753 – 763.

DOI: 10.1016/j.crci.2004.10.018

Google Scholar

[10] W.L. Meng, G.X. Liu, T. Okamura, H. Kawaguchi, Z.H. Zhang, W.Y. Sun, N. Ueyama, Syntheses, crystal structures, and magnetic properties of novel copper (II) complexes with the flexible bidentate ligand 1-bromo-3, 5-bis (imidazol-1-ylmethyl) benzene, Cryst. Growth. Des., 6 (2006).

DOI: 10.1021/cg060304i

Google Scholar

[11] Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesium based metal organic framework, J. Colloid Interface Sci., 353 (2011) 549 – 556.

DOI: 10.1016/j.jcis.2010.09.065

Google Scholar

[12] J.A. Hyatt, Liquid and supercritical carbon dioxide as organic solvents, J. Org. Chem., 49 (1984) 5097 – 5101.

DOI: 10.1021/jo00200a016

Google Scholar

[13] C.T. Chiou, D.E. Kile, Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter, Environ. Sci. Technol., 28 (1994) 1139 – 1144.

DOI: 10.1021/es00055a026

Google Scholar

[14] A.G. Wong-Foy, A.J. Matzger, O.M. Yaghi, Exceptional H2 saturation uptake in microporous metal organic frameworks, J. Am. Chem. Soc., 128 (2006) 3494 – 3495.

DOI: 10.1021/ja058213h

Google Scholar