[1]
S. -J. Kim, S. -H. Jung, and J. -S. Kim, Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds, Bioresour. Technol. 101 (2010) 9294–300.
DOI: 10.1016/j.biortech.2010.06.110
Google Scholar
[2]
P. T. Williams and N. Nugranad, Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy. 25 (2000) 493–513.
DOI: 10.1016/s0360-5442(00)00009-8
Google Scholar
[3]
X. Guo et al., Properties of bio-oil from fast pyrolysis of rice husk, Chin. J. Chem. Eng. 19 (2011) 116–21.
Google Scholar
[4]
J. Wildschut et al., Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts, Ind Eng Chem Res. 48 (2009) 10324–34.
DOI: 10.1021/ie9006003
Google Scholar
[5]
P. M. Mortensen et al., A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. Gen. 407 (2011) 1–19.
Google Scholar
[6]
A. R. Ardiyanti et al., Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support, Appl. Catal. B Environ. 117–8 (2012) 105–17.
DOI: 10.1016/j.apcatb.2011.12.032
Google Scholar
[7]
J. Payormhorm et al., Pt/Al2O3-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil, Bioresour. Technol. 139 (2013) 128–35.
DOI: 10.1016/j.biortech.2013.04.023
Google Scholar
[8]
S. R. Naqvi, Y. Uemura, and S. B. Yusup, Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst, J. Anal. Appl. Pyrolysis.
DOI: 10.1016/j.jaap.2013.12.009
Google Scholar
[9]
V. A. Yakovlev et al., Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel, Catal. Today. 144 (2009) 362–6.
DOI: 10.1016/j.cattod.2009.03.002
Google Scholar
[10]
Y. Wang et al., Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite, Catal. Commun. 12 (2011) 1201–5.
DOI: 10.1016/j.catcom.2011.04.010
Google Scholar
[11]
D. -Y. Hong et al., Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts, Chem. Commun. 46 (2010) 1038–40.
DOI: 10.1039/b918209h
Google Scholar
[12]
J. Sun et al., Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol, J. Catal. 306 (2013) 47–57.
DOI: 10.1016/j.jcat.2013.05.020
Google Scholar
[13]
P. T. M. Do et al., Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts, Green Chem. 14 (2012) 1388–97.
DOI: 10.1039/c2gc16544a
Google Scholar
[14]
X. Zhu et al., Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst, J. Catal. 281 (2011) 21–9.
DOI: 10.1016/j.jcat.2011.03.030
Google Scholar
[15]
S. Sitthisa et al., Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts, J. Catal. 277 (2011) 1–13.
Google Scholar
[16]
J. He, C. Zhao, and J. A. Lercher, Impact of solvent for individual steps of phenol hydrodeoxygenation with Pd/C and HZSM-5 as catalysts, J. Catal. 309 (2014) 362–75.
DOI: 10.1016/j.jcat.2013.09.009
Google Scholar
[17]
Y. -H. E. Sheu, R. G. Anthony, and E. J. Soltes, Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment, Fuel Process. Technol. 19 (1988) 31–50.
DOI: 10.1016/0378-3820(88)90084-7
Google Scholar
[18]
Z. Su-Ping, Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass, Energy Sources. 25 (2003) 57–65.
DOI: 10.1080/00908310290142118
Google Scholar