[1]
D. M. D'Alessandro, B. Smit, J. R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Edit. 49 (2010) 6058-6082.
DOI: 10.1002/anie.201000431
Google Scholar
[2]
Z. Xiang, D. Cao, Porous covalent–organic materials: synthesis, clean energy application and design, J. Mater. Chem. 1 (2013) 2691-2718.
DOI: 10.1039/c2ta00063f
Google Scholar
[3]
H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, High capacity carbon dioxide adsorption by inexpensive covalent organic polymers, J. Mater. Chem. 22, (2012) 8431-8437.
DOI: 10.1039/c2jm30761h
Google Scholar
[4]
N. B. McKeown, P. M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev. 35 (2006) 675-683.
DOI: 10.1039/b600349d
Google Scholar
[5]
A. Laybourn, R. Dawson, R. Clowes, J. A. Iggo, A. I. Cooper, Y. Z. Khimyak, et al., Branching out with aminals: microporous organic polymers from difunctional monomers, Polym. Chem. 3 (2012) 533-537.
DOI: 10.1039/c2py00506a
Google Scholar
[6]
S. -Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev. 42 (2013) 548-568.
DOI: 10.1039/c2cs35072f
Google Scholar
[7]
J. P. Sculley, J. -R. Li, J. Park, W. Lu, H. -C. J. Zhou, Metal-organic frameworks and porous polymer networks for carbon capture, Sust. Tec. , Sys. & Pol. ( 2012).
DOI: 10.5339/stsp.2012.ccs.16
Google Scholar
[8]
H. A. Patel, F. Karadas, J. Byun, J. Park, E. Deniz, A. Canlier, et al., Highly Stable Nanoporous Sulfur‐Bridged Covalent Organic Polymers for Carbon Dioxide Removal, Adv. Funct. Mater. 18 (2013) 2270-2276.
DOI: 10.1002/adfm.201202442
Google Scholar
[9]
R. Dawson, E. Stöckel, J. R. Holst, D. J. Adams, A. I. Cooper, Microporous organic polymers for carbon dioxide capture, En. & Env. Sc. 4 (2011) 4239-4245.
DOI: 10.1039/c1ee01971f
Google Scholar
[10]
H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, et al., Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers, Nat. Comm. 4 (2013) 1357.
DOI: 10.1038/ncomms2359
Google Scholar
[11]
A. Grirrane, A. Corma, H. Garcia, Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts, Nat. Protoc. 5 (2010) 429-438.
DOI: 10.1038/nprot.2009.242
Google Scholar
[12]
M. Ganesh, P. Hemalatha, M. Peng, J. Lee, M. Palanichamy, H. Jang, CO2 Sorption on Carbon Balls Derived from Covalent Organic Polymer, in: T. -h. Kim, C. Ramos, J. Abawajy, B. -H. Kang, D. Ślęzak, H. Adeli (Eds. ), Computer Applications for Modeling, Simulation, and Automobile, Springer Berlin Heidelberg, 2012, pp.165-171.
DOI: 10.1007/978-3-642-35248-5_24
Google Scholar
[13]
A. Arenillas, K. Smith, T. Drage, and C. Snape, CO< sub> 2</sub> capture using some fly ash-derived carbon materials, Fuel 84 (2005) 2204-2210.
DOI: 10.1016/j.fuel.2005.04.003
Google Scholar
[14]
J. Gibbins, H. Chalmers, Carbon capture and storage, En. Pol. 36 (2008) 4317-4322.
DOI: 10.1016/j.enpol.2008.09.058
Google Scholar
[15]
Z. Xiang, D. Cao, Synthesis of Luminescent Covalent–Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules, Macromol. Rapid Commun. 33 (2012) 1184-1190.
DOI: 10.1002/marc.201100865
Google Scholar
[16]
Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin, D. Cao, Covalent-organic polymers for carbon dioxide capture, J. Mater. Chem. 22 (2012) 22663-22669.
DOI: 10.1039/c2jm35446b
Google Scholar
[17]
N. L. Campbell, R. Clowes, L. K. Ritchie, A. I. Cooper, Rapid microwave synthesis and purification of porous covalent organic frameworks, " Chem. Mater. 21 (2009) 204-206.
DOI: 10.1021/cm802981m
Google Scholar