A Review on Robustness of Covalent Organic Polymers for CO2 Capture

Article Preview

Abstract:

The presence of carbon dioxide (CO2) in natural gas stream is a critical problem; besides causing corrosion it also reduces the energy contents and heating value of natural gas. Various separation techniques are available to separate CO2 from natural gas, such as metal organic framework (MOF), covalent organic framework (COF) and Covalent Organic Polymer (COP) adsorbents. The criteria of adsorbent selection that need to be fulfilled include high adsorption capacity, high selectivity of CO2 and hydrothermal stability at operating conditions. COPs are crystalline porous materials having high CO2 capacity and selectivity in the presence of water vapors. However, the research on COP material development is new and scarce information is available in literature. In this prospect, the paper highlights the different types of COPs, their basic constituents and the adsorption capacities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-240

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. D'Alessandro, B. Smit, J. R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Edit. 49 (2010) 6058-6082.

DOI: 10.1002/anie.201000431

Google Scholar

[2] Z. Xiang, D. Cao, Porous covalent–organic materials: synthesis, clean energy application and design, J. Mater. Chem. 1 (2013) 2691-2718.

DOI: 10.1039/c2ta00063f

Google Scholar

[3] H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, High capacity carbon dioxide adsorption by inexpensive covalent organic polymers, J. Mater. Chem. 22, (2012) 8431-8437.

DOI: 10.1039/c2jm30761h

Google Scholar

[4] N. B. McKeown, P. M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev. 35 (2006) 675-683.

DOI: 10.1039/b600349d

Google Scholar

[5] A. Laybourn, R. Dawson, R. Clowes, J. A. Iggo, A. I. Cooper, Y. Z. Khimyak, et al., Branching out with aminals: microporous organic polymers from difunctional monomers, Polym. Chem. 3 (2012) 533-537.

DOI: 10.1039/c2py00506a

Google Scholar

[6] S. -Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev. 42 (2013) 548-568.

DOI: 10.1039/c2cs35072f

Google Scholar

[7] J. P. Sculley, J. -R. Li, J. Park, W. Lu, H. -C. J. Zhou, Metal-organic frameworks and porous polymer networks for carbon capture, Sust. Tec. , Sys. & Pol. ( 2012).

DOI: 10.5339/stsp.2012.ccs.16

Google Scholar

[8] H. A. Patel, F. Karadas, J. Byun, J. Park, E. Deniz, A. Canlier, et al., Highly Stable Nanoporous Sulfur‐Bridged Covalent Organic Polymers for Carbon Dioxide Removal, Adv. Funct. Mater. 18 (2013) 2270-2276.

DOI: 10.1002/adfm.201202442

Google Scholar

[9] R. Dawson, E. Stöckel, J. R. Holst, D. J. Adams, A. I. Cooper, Microporous organic polymers for carbon dioxide capture, En. & Env. Sc. 4 (2011) 4239-4245.

DOI: 10.1039/c1ee01971f

Google Scholar

[10] H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, et al., Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers, Nat. Comm. 4 (2013) 1357.

DOI: 10.1038/ncomms2359

Google Scholar

[11] A. Grirrane, A. Corma, H. Garcia, Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts, Nat. Protoc. 5 (2010) 429-438.

DOI: 10.1038/nprot.2009.242

Google Scholar

[12] M. Ganesh, P. Hemalatha, M. Peng, J. Lee, M. Palanichamy, H. Jang, CO2 Sorption on Carbon Balls Derived from Covalent Organic Polymer, in: T. -h. Kim, C. Ramos, J. Abawajy, B. -H. Kang, D. Ślęzak, H. Adeli (Eds. ), Computer Applications for Modeling, Simulation, and Automobile, Springer Berlin Heidelberg, 2012, pp.165-171.

DOI: 10.1007/978-3-642-35248-5_24

Google Scholar

[13] A. Arenillas, K. Smith, T. Drage, and C. Snape, CO< sub> 2</sub> capture using some fly ash-derived carbon materials, Fuel 84 (2005) 2204-2210.

DOI: 10.1016/j.fuel.2005.04.003

Google Scholar

[14] J. Gibbins, H. Chalmers, Carbon capture and storage, En. Pol. 36 (2008) 4317-4322.

DOI: 10.1016/j.enpol.2008.09.058

Google Scholar

[15] Z. Xiang, D. Cao, Synthesis of Luminescent Covalent–Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules, Macromol. Rapid Commun. 33 (2012) 1184-1190.

DOI: 10.1002/marc.201100865

Google Scholar

[16] Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin, D. Cao, Covalent-organic polymers for carbon dioxide capture, J. Mater. Chem. 22 (2012) 22663-22669.

DOI: 10.1039/c2jm35446b

Google Scholar

[17] N. L. Campbell, R. Clowes, L. K. Ritchie, A. I. Cooper, Rapid microwave synthesis and purification of porous covalent organic frameworks, " Chem. Mater. 21 (2009) 204-206.

DOI: 10.1021/cm802981m

Google Scholar