Conversion of Inedible Biomass Wastes as Alternative Petroleum-Related Chemicals Using Iron Oxide Catalysts

Article Preview

Abstract:

We developed iron-oxide catalysts for producing petroleum-related chemicals from inedible biomass wastes containing water by oxidative cracking. These catalysts composed basically of iron-oxide and zirconia. The usefulness of the catalysts was examined by the reactions of several inedible biomass wastes, such as palm waste, livestock excreta, fermentation residue, raw glycerin, raw bioethanol and lignin. It was found that ketones, mainly acetone, were produced from palm waste, livestock excreta, fermentation residue and raw bioethanol at high yields. Phenol was obtained from palm waste. In the case of raw glycerin, even if high contents of alkali, allyl-alcohol, propene and acetone were successfully produced. Furthermore, phenols could be recovered from lignin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-314

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Steene, JP. Tagutchou, F. Mermoud, E. Martin, S. Salvador, Fuel, 89(2010)3320-3329.

DOI: 10.1016/j.fuel.2010.03.035

Google Scholar

[2] M. Kajita, T. Kimura, K. Norinaga, CZ. Li, J. Hayashi, Energy Fuels, 24(2010)108-116.

Google Scholar

[3] H. Kobayashi, H. Ohta, A. Fukuoka, Catal. Sci. Tech., 2(2012)869-883.

Google Scholar

[4] H. Kobayashi, Y. Ito, T. Komanoya, Y. Hosaka, P.L. Dhepe, K. Kasai, K. Hara, A. Fukuoka, Green Chem., 13(2011)326-333.

DOI: 10.1039/c0gc00666a

Google Scholar

[5] K. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Green Chem. , 11(2009)1627-1632.

Google Scholar

[6] Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Appl. Catal. A, 433-434(2012) 128-134.

Google Scholar

[7] Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige, J. Catal., 272(2010)191-194.

Google Scholar

[8] M. Hara, Energy & Env. Sci., 3(2010)601-607.

Google Scholar

[9] T. Masuda, Y. Kondo, M. Miwa, T. Shimotori, S.R. Mukai, K. Hashimoto, M. Takano, S. Kawasaki, S. Yoshida, Chem. Eng. Sci., 56(2001)897-904.

DOI: 10.1016/s0009-2509(00)00303-1

Google Scholar

[10] N.R. Duangkamol, Y. Ratanaporn, T. Tago, T. Masuda, Korean J. Chem. Eng., 25(2008)426-430.

Google Scholar

[11] S. Funai, Y. Satoh, K. Tajima, T. Tago T., T. Masuda, Top. Catal. 53(2010)654-658.

Google Scholar

[12] S. Funai, T. Tago, T. Masuda, Catal. Today, 164(2011)443-446.

Google Scholar

[13] E. Fumoto, Y. Mizutani, T. Tago, T. Masuda, Appl. Catal. B, 68(2006)154-159.

Google Scholar

[14] T. Yoshikawa, T. Tago, A. Nakamura, A. Konaka, M. Mukaida, T. Masuda, Res. Chem. Intermed. 37(2011)1247-1256.

DOI: 10.1007/s11164-011-0391-y

Google Scholar

[15] T. Yoshikawa, N.R. Duangkamol, T. Tago, T. Masuda, J. Jpn Petrol. Inst., 53(2010) 178-183.

Google Scholar

[16] T. Yoshikawa, T. Yagi, S. Shinohara, T. Fukunaga, Y. Nakasaka, T. Tago, T. Masuda, Fuel Processing Technology, 108(2013)69-75.

DOI: 10.1016/j.fuproc.2012.05.003

Google Scholar

[17] T. Sakaki, M. Shibata, T. Miki, H. Hirosue, N. Hayashi, Bioresour. Technol, 58(1996)197-202.

Google Scholar

[18] M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri, K. Arai, Ind. Eng. Chem. Res., 39(2000) 2883 -2890.

DOI: 10.1021/ie990690j

Google Scholar

[19] M. Goto, R. Obuchi, T. Hirose, T. Sasaki, M. Shibata, Bioresour. Technol. 93(2004)279-284.

Google Scholar

[20] R. Pestman, RM. Koster, A. van Duijne, JAZ. Pieterse, V. Ponec, J. Catal. 168(1997)265-272.

DOI: 10.1006/jcat.1997.1624

Google Scholar

[21] T. Masuda, Y. Fujikata, S.R. Mukai, K. Hashimoto, Appl. Catal.A., 165 (1997)57-72.

Google Scholar

[22] E. Arceo, P. Marsden, R.G. Bergman, J.A. Ellman, Chem. Commun., 23(2009) 3357-3359.

Google Scholar