Fabrication and Characterization of Facilitated Transport Membrane for Gas Separation

Article Preview

Abstract:

The new membrane material containing facilitate transport medium to enhance the performance of gas separation membrane has been fabricated by using monoethanolamine (MEA) as a fixed carrier with different concentration (5 & 10 wt. %) by using the solvent evaporation method. The developed membranes were characterized by using Field Emission Electron Microscope (FESEM), Fourier Transform Infrared (FTIR), and Thermo-Gravimetric Analysis (TGA). The developed membranes were found nonporous and dense in structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

533-536

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62 (1991) 165-185.

DOI: 10.1016/0376-7388(91)80060-j

Google Scholar

[2] D. L. Gin, and R. D. Noble, Designing the next generation of chemical separation membranes, Sci. 332 (2011) 674-676.

DOI: 10.1126/science.1203771

Google Scholar

[3] R. W. Baker, Research needs in the membrane separation industry: Looking back, looking forward, J. Membr. Sci. 362 (2010) 134-136.

DOI: 10.1016/j.memsci.2010.06.028

Google Scholar

[4] C. Laberty-Robert, K. Valle, F. Pereira et al., Design and properties of functional hybrid organic–inorganic membranes for fuel cells, Chem. Soc. Rev. 40 (2011) 961-1005.

DOI: 10.1039/c0cs00144a

Google Scholar

[5] D. F. Mohshim, H. b. Mukhtar, Z. Man et al., Latest Development on Membrane Fabrication for Natural Gas Purification: A Review, J. Eng. 2013 (2013) 7.

DOI: 10.1155/2013/101746

Google Scholar

[6] R. Nasir, H. Mukhtar, Z. Man et al., Material Advancements in Fabrication of Mixed-Matrix Membranes, Chem. Eng Technol. 36 (2013) 717-727.

DOI: 10.1002/ceat.201200734

Google Scholar

[7] H. A. Mannan, H. Mukhtar, T. Murugesan et al., Recent Applications of Polymer Blends in Gas Separation Membranes, Chem. Eng. Technol. 36 (2013) 1838–1846.

DOI: 10.1002/ceat.201300342

Google Scholar

[8] R. D. Noble, and S. A. Stern, Membrane separations technology: principles and applications: Elsevier, (1995).

Google Scholar

[9] D. Q. Vu, W. J. Koros, and S. J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, J. Membr. Sci. 211(2003) 311-334.

DOI: 10.1016/s0376-7388(02)00429-5

Google Scholar

[10] E. Cussler, R. Aris, and A. Bhown, On the limits of facilitated diffusion, J. Membr. Sci. 43 (1989) 149-164.

DOI: 10.1016/s0376-7388(00)85094-2

Google Scholar

[11] J. Han, W. Lee, J. M. Choi et al., Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation, J. Membr Sci. 351 (2010) 141-148.

DOI: 10.1016/j.memsci.2010.01.038

Google Scholar

[12] N. N. Krishnan, H. J. Kim, M. Prasanna et al., Synthesis and characterization of sulfonated poly(ether sulfone) copolymer membranes for fuel cell applications, J. Power Source. 158 (2006) 1246-1250.

DOI: 10.1016/j.jpowsour.2005.09.064

Google Scholar

[13] C. Zhao, B. Yu, B. Qian et al., BPA transfer rate increase using molecular imprinted polyethersulfone hollow fiber membrane, J. Membr. Sci. 310 (2008) 38-43.

DOI: 10.1016/j.memsci.2007.10.042

Google Scholar