[1]
S. Van Loo, E. P. Van Elk, and G. F. Versteeg, The removal of carbon dioxide with activated solutions of methyl-diethanol-amine, J. Petrol. Sci. Eng. 55 (2007) 135–145.
DOI: 10.1016/j.petrol.2006.04.017
Google Scholar
[2]
M. K. Mondal, Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine, Indian J. Chem. Technol. 17 (2010) 431–435.
Google Scholar
[3]
N. M. Yunus, M. I. Abdul Mutalib, and T. Murugesan, Modeling of Solubility of CO2 in 1-Butylpyridinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid using UNIFAC, AIP Conf. Proc. 1482, (2010) 229-233.
DOI: 10.1063/1.4757471
Google Scholar
[4]
S. Park, B. Min, J. Lee, and S. Nam, Absorption characteristic of continuous CO2 absorption process, Prepr. Pap. -Am. Chem. Soc. Div. Fuel Chem. 49 (1) (2004) 249–250.
Google Scholar
[5]
B. P. Mandal, A. K. Biswas, and S. S. Bandyopadhyay, Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine, Chem. Eng. Sci. 58 (2003) 4137–4144.
DOI: 10.1016/s0009-2509(03)00280-x
Google Scholar
[6]
S. A. Freeman and G. T. Rochelle, Thermal Degradation of Aqueous Piperazine for CO2 Capture: 2. Product Types and Generation Rates, Ind. Eng. Chem. Res. 51 (2012) 7726-7735.
DOI: 10.1021/ie201917c
Google Scholar
[7]
A. Veawab, P. Tontiwachwuthikul, and A. Chakma, Corrosion Behaviour of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions, Ind. Eng. Chem. Res. 38 (1999) 3917–3924.
DOI: 10.1021/ie9901630
Google Scholar
[8]
Xi Chen, S. A. Freeman, and G. T. Rochelle, Foaming of aqueous piperazine and monoethanolamine for CO2 capture, Int. J. Greenhouse Gas Control 5 (2011) 381–386.
DOI: 10.1016/j.ijggc.2010.09.006
Google Scholar
[9]
A. K. Ziyada, C. D. Wilfred, M. A. Bustam, Z. Man, and T. Murugesan, Thermo physical Properties of 1-Propyronitrile-3-alkylimidazolium Bromide Ionic Liquids at Temperatures from (293. 15 to 353. 15) K, J. Chem. Eng. Data 55 (2010) 3886–3890.
DOI: 10.1021/je901050v
Google Scholar
[10]
S. Keskin, D. Kayrak, U. Akman, and O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids 43 (2007) 150–180.
DOI: 10.1016/j.supflu.2007.05.013
Google Scholar
[11]
Dharaskar. S. A, Ionic Liquids (A Review): The Green Solvents for Petroleum and Hydrocarbon Industries, Res. J. Chem. Sci. 2 (8) (2012) 80–85.
Google Scholar
[12]
K. A. Kurnia, F. Harris, C. D. Wilfred, M. I. Abdul Mutalib, and T. Murugesan, Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100–1600) KPa, J. Chem. Thermodyn. 41 (2009) 1069–1073.
DOI: 10.1016/j.jct.2009.04.003
Google Scholar
[13]
M. M. Taib and T. Murugesan, Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa, Chem. Eng. J. 181-182 (2012) 56–62.
DOI: 10.1016/j.cej.2011.09.048
Google Scholar
[14]
A. M. Shariff, G. Murshid, K. K. Lau, M. A. Bustam, and F. Ahamd, Solubility of CO2 in Aqueous Solutions of 2- Amino-2-Methyl-1-Propanol at High Pressure, World Academy of Sci. Eng. Technol. 60 (2011) 1050–1053.
Google Scholar
[15]
E. T. Calleja, J. Skinner, D. G. Tauste, CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods, J. Chem. (2013) 1-16.
Google Scholar