Solubility of CO2 in an Aqueous Ammonium Based Ionic Liquid

Article Preview

Abstract:

The aim of this research is to find out the potential usage of water miscible ammonium based ionic liquids (ILs) towards CO2 capture. To measure the solubility of CO2 in 55 wt. % aqueous solution of Tetra butyl ammonium hydroxide (TBAOH), the experiments were carried out using high pressure solubility cell. Solubilities were determined in the temperature range of (303.15 to 333.15) K by varying the pressure from (2 to 10) bar and are reported as loading capacity (mol CO2/mol TBAOH). The solubility of CO2 in this aqueous IL decreased with increasing temperature and increased with increasing pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

549-552

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Van Loo, E. P. Van Elk, and G. F. Versteeg, The removal of carbon dioxide with activated solutions of methyl-diethanol-amine, J. Petrol. Sci. Eng. 55 (2007) 135–145.

DOI: 10.1016/j.petrol.2006.04.017

Google Scholar

[2] M. K. Mondal, Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine, Indian J. Chem. Technol. 17 (2010) 431–435.

Google Scholar

[3] N. M. Yunus, M. I. Abdul Mutalib, and T. Murugesan, Modeling of Solubility of CO2 in 1-Butylpyridinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid using UNIFAC, AIP Conf. Proc. 1482, (2010) 229-233.

DOI: 10.1063/1.4757471

Google Scholar

[4] S. Park, B. Min, J. Lee, and S. Nam, Absorption characteristic of continuous CO2 absorption process, Prepr. Pap. -Am. Chem. Soc. Div. Fuel Chem. 49 (1) (2004) 249–250.

Google Scholar

[5] B. P. Mandal, A. K. Biswas, and S. S. Bandyopadhyay, Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine, Chem. Eng. Sci. 58 (2003) 4137–4144.

DOI: 10.1016/s0009-2509(03)00280-x

Google Scholar

[6] S. A. Freeman and G. T. Rochelle, Thermal Degradation of Aqueous Piperazine for CO2 Capture: 2. Product Types and Generation Rates, Ind. Eng. Chem. Res. 51 (2012) 7726-7735.

DOI: 10.1021/ie201917c

Google Scholar

[7] A. Veawab, P. Tontiwachwuthikul, and A. Chakma, Corrosion Behaviour of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions, Ind. Eng. Chem. Res. 38 (1999) 3917–3924.

DOI: 10.1021/ie9901630

Google Scholar

[8] Xi Chen, S. A. Freeman, and G. T. Rochelle, Foaming of aqueous piperazine and monoethanolamine for CO2 capture, Int. J. Greenhouse Gas Control 5 (2011) 381–386.

DOI: 10.1016/j.ijggc.2010.09.006

Google Scholar

[9] A. K. Ziyada, C. D. Wilfred, M. A. Bustam, Z. Man, and T. Murugesan, Thermo physical Properties of 1-Propyronitrile-3-alkylimidazolium Bromide Ionic Liquids at Temperatures from (293. 15 to 353. 15) K, J. Chem. Eng. Data 55 (2010) 3886–3890.

DOI: 10.1021/je901050v

Google Scholar

[10] S. Keskin, D. Kayrak, U. Akman, and O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids 43 (2007) 150–180.

DOI: 10.1016/j.supflu.2007.05.013

Google Scholar

[11] Dharaskar. S. A, Ionic Liquids (A Review): The Green Solvents for Petroleum and Hydrocarbon Industries, Res. J. Chem. Sci. 2 (8) (2012) 80–85.

Google Scholar

[12] K. A. Kurnia, F. Harris, C. D. Wilfred, M. I. Abdul Mutalib, and T. Murugesan, Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100–1600) KPa, J. Chem. Thermodyn. 41 (2009) 1069–1073.

DOI: 10.1016/j.jct.2009.04.003

Google Scholar

[13] M. M. Taib and T. Murugesan, Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa, Chem. Eng. J. 181-182 (2012) 56–62.

DOI: 10.1016/j.cej.2011.09.048

Google Scholar

[14] A. M. Shariff, G. Murshid, K. K. Lau, M. A. Bustam, and F. Ahamd, Solubility of CO2 in Aqueous Solutions of 2- Amino-2-Methyl-1-Propanol at High Pressure, World Academy of Sci. Eng. Technol. 60 (2011) 1050–1053.

Google Scholar

[15] E. T. Calleja, J. Skinner, D. G. Tauste, CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods, J. Chem. (2013) 1-16.

Google Scholar