[1]
H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: A review, J. Environ. Sci. 20 (2008) 14-27.
DOI: 10.1016/s1001-0742(08)60002-9
Google Scholar
[2]
G.Q. Lu, J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective, J. Colloid Interface Sci. 314 (2007) 589-603.
DOI: 10.1016/j.jcis.2007.05.067
Google Scholar
[3]
N. Nishiyama, M. Yamaguchi, T. Katayama, Y. Hirota, M. Miyamoto, Y. Egashira, K. Ueyama, K. Nakanishi, T. Ohta, A. Mizusawa, T. Satoh, Hydrogen-permeable membranes composed of zeolite nano-blocks, J. Membr. Sci. 306 (2007) 349-354.
DOI: 10.1016/j.memsci.2007.09.011
Google Scholar
[4]
H. Wang, X. Dong, Y.S. Lin, Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation, J. Membr. Sci. 450 (2014) 425-432.
DOI: 10.1016/j.memsci.2013.08.030
Google Scholar
[5]
T. Yoshioka, M. Kanezashi, T. Tsuru, Micropore size estimation of gas separation membranes: A study in experimental and molecular dynamics, AIChE J. 59 (2013) 2179-2194.
DOI: 10.1002/aic.13966
Google Scholar
[6]
S.M. Mirfendereski, T. Mazaheri, M. Sadrzadeh, T. Mohammadi, CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure, Sep. Purif. Technol. 61 (2008) 317-323.
DOI: 10.1016/j.seppur.2007.11.007
Google Scholar
[7]
J. K. Das, Nandini Das, S. Bandyopadhyay, Highly oriented improved SAPO-34 membrane on low cost support for hydrogen gas separation, J. Mater. Chem. A, 1 (2013) 4966-4973.
DOI: 10.1039/c3ta01095c
Google Scholar
[8]
S. Li, C.Q. Fan, High-flux SAPO-34 membrane for CO2/N2 separation, Ind. Eng. Chem. Res. 49 (2010) 4399-4404.
DOI: 10.1021/ie902082f
Google Scholar
[9]
Y. Hirota, K. Watanabe, Y. Uchida, Y. Egashira, K. Yoshida, Y. Sasaki, N. Nishiyama, Coke deposition in the SAPO-34 membranes for examining the effect of zeolitic and non-zeolitic pathways on the permeation and separation properties in gas and vapor permeations, J. Membr. Sci., 415-416 (2012).
DOI: 10.1016/j.memsci.2012.04.050
Google Scholar
[10]
T.L. Chew, A.L. Ahmad, S. Bhatia, Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation, Chem. Eng. J. 171 (2011) 1053–1059.
DOI: 10.1016/j.cej.2011.05.001
Google Scholar
[11]
D.C. Montgomery, Design and Analysis of Experiments, 7th edition, John Wiley & Sons, Inc., (2009).
Google Scholar
[12]
M. -S. Fan, A.Z. Abdullah, S. Bhatia, Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2 catalyst: Process optimization, Int. J. Hydrogen Energy 36 (2011) 4875-4886.
DOI: 10.1016/j.ijhydene.2011.01.064
Google Scholar
[13]
Z. Tan, S. Song, J. Han, Y. Wang, Y. Lu, Y. Yan, Optimization of partitioning process parameters of chloramphenicol in ionic liquid aqueous two-phase flotation using response surface methodology, J. Iranian Chem. Soc., 10 (2013) 505-512.
DOI: 10.1007/s13738-012-0184-2
Google Scholar
[14]
T.K. Dora, Y.K. Mohanty, G.K. Roy, B. Sarangi, Adsorption studies on As(III) from wastewater with a novel adsorbent in a three-phase fluidized bed by using response surface method, J. Environ. Chem. Eng., 1 (2013) 150-158.
DOI: 10.1016/j.jece.2013.04.011
Google Scholar