Characterization and Assessment of Cockle Shell as Potential CO2 Adsorbents

Article Preview

Abstract:

Material characterization is a crucial step to ensure the characteristics and properties of the samples are comparable to the standard adsorbent and suitable for CO2 adsorption. The objective of this work is to characterize natural calcium based materials for CO2 adsorption which are obtained from waste cockle shells. Characterization analyses are conducted by using XRD, BET and FESEM. Material characterization indicates that raw cockle shell is made up of aragonite and needle-like structure. It is also shown that CaCO3 can be decomposed to CaO through high temperature calcination process. Through physisorption analysis, the samples are classified as mesoporous materials and it is shown that calcined cockle shell is better than raw cockle shell in term of surface area and pore volume. The results proved that calcium based materials could be successfully employed as sorbent for CO2 separation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

685-689

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Lu, P. G. Smirniotis, F. O. Ernst, and S. E. Pratsinis, Nanostructured ca-based sorbents with high co2 uptake efficiency, Chemical Engineering Science. vol. 64, 2009, p.1936-(1943).

DOI: 10.1016/j.ces.2008.12.038

Google Scholar

[2] P. Sun, J. R. Grace, C. J. Lim, and E. J. Anthony, The effect of cao sintering on cyclic co2 capture in energy systems, AIChE Journal. vol. 53, 2007, pp.2432-2442.

DOI: 10.1002/aic.11251

Google Scholar

[3] S. Wang, H. Shen, S. Fan, Y. Zhao, X. Ma, and J. Gong, Enhanced co2 adsorption capacity and stability using cao-based adsorbents treated by hydration, AIChE Journal. vol. 59, 2013, pp.3586-3593.

DOI: 10.1002/aic.14126

Google Scholar

[4] K. Wang, X. Guo, P. Zhao, L. Zhang, and C. Zheng, Co2 capture of limestone modified by hydration–dehydration technology for carbonation/calcination looping, Chemical Engineering Journal. vol. 173, 2011, pp.158-163.

DOI: 10.1016/j.cej.2011.07.057

Google Scholar

[5] N. Nakatani, H. Takamori, K. Takeda, and H. Sakugawa, Transesterification of soybean oil using combusted oyster shell waste as a catalyst, Bioresource Technology. vol. 100, 2009, pp.1510-1513.

DOI: 10.1016/j.biortech.2008.09.007

Google Scholar

[6] M. Samtani, D. Dollimore, and K. S. Alexander, Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters, Thermochimica Acta. vol. 392–393, 2002, pp.135-145.

DOI: 10.1016/s0040-6031(02)00094-1

Google Scholar

[7] P. K. Mehta, Reducing the environmental impact of concrete, Concrete International. vol. 23, 2001, p.6.

Google Scholar

[8] Y. J. Li, C. S. Zhao, H. C. Chen, L. B. Duan, and X. P. Chen, Co2 capture behavior of shell during calcination/carbonation cycles, Chemical Engineering & Technology. vol. 32, 2009, pp.1176-1182.

DOI: 10.1002/ceat.200900008

Google Scholar

[9] N. Rodriguez, M. Alonso, G. Grasa, and J. C. Abanades, Heat requirements in a calciner of caco3 integrated in a co2 capture system using cao, Chemical Engineering Journal. vol. 138, 2008, pp.148-154.

DOI: 10.1016/j.cej.2007.06.005

Google Scholar

[10] A. M. Kalinkin, E. V. Kalinkina, O. A. Zalkind, and T. I. Makarova, Chemical interaction of calcium oxide and calcium hydroxide with co2 during mechanical activation, Inorganic Materials. vol. 41, 2005/10/01 2005, pp.1073-1079.

DOI: 10.1007/s10789-005-0263-1

Google Scholar

[11] M. Mohamed, N. A. Rashidi, S. Yusup, L. K. Teong, U. Rashid, and R. M. Ali, Effects of experimental variables on conversion of cockle shell to calcium oxide using thermal gravimetric analysis, Journal of Cleaner Production. vol. 37, 2012, pp.394-397.

DOI: 10.1016/j.jclepro.2012.07.050

Google Scholar

[12] M. Suzuki, Adsorption engineering. New York: Elsevier Science Publishing, (1990).

Google Scholar

[13] Z. Hu, M. Shao, Q. Cai, S. Ding, C. Zhong, X. Wei, and Y. Deng, Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride, Journal of Materials Processing Technology. vol. 209, 2009, pp.1607-1611.

DOI: 10.1016/j.jmatprotec.2008.04.008

Google Scholar

[14] J. Wang, Thomsan W. J, The effect of sample preparation on the thermal decomposition of caco3, Thermochimica Acta. vol. 255, 1995, p.8.

Google Scholar

[15] R. R. Lourenço, R. S. Angélica, and J. d. A. Rodrigues, Preparation of refractory calcium aluminate cement using the sonochemical process, Materials Research. vol. 16, 2013, pp.731-739.

DOI: 10.1590/s1516-14392013005000041

Google Scholar

[16] P. Sun, J. R. Grace, C. J. Lim, and E. J. Anthony, Determination of intrinsic rate constants of the cao–co2 reaction, Chemical Engineering Science. vol. 63, 2008, pp.47-56.

DOI: 10.1016/j.ces.2007.08.055

Google Scholar

[17] H. Deng, H. Yi, X. Tang, Q. Yu, P. Ning, and L. Yang, Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13x and 5a zeolites, Chemical Engineering Journal. vol. 188, 2012, pp.77-85.

DOI: 10.1016/j.cej.2012.02.026

Google Scholar

[18] M. -G. Olivier and R. Jadot, Adsorption of light hydrocarbons and carbon dioxide on silica gel, Journal of Chemical & Engineering Data. vol. 42, 1997/03/01 1997, pp.230-233.

DOI: 10.1021/je960200j

Google Scholar

[19] H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, Progress in carbon dioxide separation and capture: A review, Journal of Environmental Sciences. vol. 20, 2008, pp.14-27.

DOI: 10.1016/s1001-0742(08)60002-9

Google Scholar