Polymer-Nanoclay Mixed Matrix Membranes for CO2/CH4 Separation: A Review

Article Preview

Abstract:

Mixed matrix membrane (MMM) has shown significant progress towards gas separation. Rigid polymers are suitable materials for MMM fabrication but adhesion problems with filler need to be addressed. A variety of inorganic fillers have been studied for CO2 separation but clay minerals were not considered much in this class. The layered silicate structure of nanoclay such as montmorillonite provides excellent opportunity to manipulate its properties, leading towards better dispersion and adhesion towards the polymer matrix. This paper reviews the potential of polymer-nanoclay MMM for CO2/CH4 separation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

690-695

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. -S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, vol. 32, pp.483-507, (2007).

DOI: 10.1016/j.progpolymsci.2007.01.008

Google Scholar

[2] L. M. Robeson, Polymer membranes for gas separation, Current Opinion in Solid State and Materials Science, vol. 4, pp.549-552, (1999).

DOI: 10.1016/s1359-0286(00)00014-0

Google Scholar

[3] C. M. Zimmerman, A. Singh, and W. J. Koros, Tailoring mixed matrix composite membranes for gas separations, Journal of Membrane Science, vol. 137, pp.145-154, (1997).

DOI: 10.1016/s0376-7388(97)00194-4

Google Scholar

[4] H. Lin and B. D. Freeman, Materials selection guidelines for membranes that remove CO2 from gas mixtures, Journal of Molecular Structure, vol. 739, pp.57-74, (2005).

DOI: 10.1016/j.molstruc.2004.07.045

Google Scholar

[5] J. M. Duval, A. J. B. Kemperman, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, Preparation of zeolite filled glassy polymer membranes, Journal of Applied Polymer Science, vol. 54, pp.409-418, (1994).

DOI: 10.1002/app.1994.070540401

Google Scholar

[6] R. Mahajan, R. Burns, M. Schaeffer, and W. J. Koros, Challenges in forming successful mixed matrix membranes with rigid polymeric materials, Journal of Applied Polymer Science, vol. 86, pp.881-890, (2002).

DOI: 10.1002/app.10998

Google Scholar

[7] R. Mahajan and W. J. Koros, Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials, Industrial & Engineering Chemistry Research, vol. 39, pp.2692-2696, (2000).

DOI: 10.1021/ie990799r

Google Scholar

[8] Y. K. Kim, H. B. Park, and Y. M. Lee, Preparation and characterization of carbon molecular sieve membranes derived from BTDA "ODA polyimide and their gas separation properties, Journal of Membrane Science, vol. 255, pp.265-273, (2005).

DOI: 10.1016/j.memsci.2005.02.002

Google Scholar

[9] M. Sadeghi, M. A. Semsarzadeh, M. Barikani, and M. Pourafshari Chenar, Gas separation properties of polyether-based polyurethane"silica nanocomposite membranes, Journal of Membrane Science, vol. 376, pp.188-195.

DOI: 10.1016/j.memsci.2011.04.021

Google Scholar

[10] L. Ge, Z. Zhu, and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Separation and Purification Technology, vol. 78, pp.76-82.

DOI: 10.1016/j.seppur.2011.01.024

Google Scholar

[11] P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology, vol. 81, pp.243-264.

DOI: 10.1016/j.seppur.2011.07.042

Google Scholar

[12] Y. Zhang, J. Sunarso, S. Liu, and R. Wang, Current status and development of membranes for CO2/CH4 separation: A review, International Journal of Greenhouse Gas Control, vol. 12, pp.84-107.

DOI: 10.1016/j.ijggc.2012.10.009

Google Scholar

[13] D. Q. Vu, W. J. Koros, and S. J. Miller, Effect of Condensable Impurities in CO2/CH4 Gas Feeds on Carbon Molecular Sieve Hollow-Fiber Membranes, Industrial & Engineering Chemistry Research, vol. 42, pp.1064-1075, (2003).

DOI: 10.1021/ie020698k

Google Scholar

[14] M. Sadeghi, M. A. Semsarzadeh, and H. Moadel, Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles, Journal of Membrane Science, vol. 331, pp.21-30, (2009).

DOI: 10.1016/j.memsci.2008.12.073

Google Scholar

[15] A. K. Zulhairun, A. F. Ismail, T. Matsuura, M. S. Abdullah, and A. Mustafa, Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation, Chemical Engineering Journal.

DOI: 10.1016/j.cej.2013.10.042

Google Scholar

[16] Y. W. Chen-Yang, Y. K. Lee, Y. T. Chen, and J. C. Wu, High improvement in the properties of exfoliated PU/clay nanocomposites by the alternative swelling process, Polymer, vol. 48, pp.2969-2979, (2007).

DOI: 10.1016/j.polymer.2007.03.024

Google Scholar

[17] X. Fu and S. Qutubuddin, Polymer"clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene, Polymer, vol. 42, pp.807-813, (2001).

DOI: 10.1016/s0032-3861(00)00385-2

Google Scholar

[18] T. G. Gopakumar, J. A. Lee, M. Kontopoulou, and J. S. Parent, Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites, Polymer, vol. 43, pp.5483-5491, (2002).

DOI: 10.1016/s0032-3861(02)00403-2

Google Scholar

[19] H. -L. Tyan, Y. -C. Liu, and K. -H. Wei, Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay, Chemistry of Materials, vol. 11, pp.1942-1947, (1999).

DOI: 10.1021/cm990187x

Google Scholar

[20] J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Harris, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, and S. H. Phillips, Flammability Properties of Polymer Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites , Chemistry of Materials, vol. 12, pp.1866-1873, (2000).

DOI: 10.1021/cm0001760

Google Scholar

[21] S. S. Ray, Rheology of Polymer/Layered Silicate Nanocomposites, Journal of Industrial and Engineering Chemistry, vol. 12, pp.811-842, (2006).

Google Scholar

[22] S. A. Hashemifard, A. F. Ismail, and T. Matsuura, Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal, Chemical Engineering Journal, vol. 170, pp.316-325.

DOI: 10.1016/j.cej.2011.03.063

Google Scholar

[23] C. Silvestre, D. Duraccio, and S. Cimmino, Food packaging based on polymer nanomaterials, Progress in Polymer Science, vol. 36, pp.1766-1782.

DOI: 10.1016/j.progpolymsci.2011.02.003

Google Scholar

[24] J. P. G. Villaluenga, M. Khayet, M. A. López-Manchado, J. L. Valentin, B. Seoane, and J. I. Mengual, Gas transport properties of polypropylene/clay composite membranes, European Polymer Journal, vol. 43, pp.1132-1143, (2007).

DOI: 10.1016/j.eurpolymj.2007.01.018

Google Scholar

[25] H. M. C. d. Azeredo, Nanocomposites for food packaging applications, Food Research International, vol. 42, pp.1240-1253, (2009).

DOI: 10.1016/j.foodres.2009.03.019

Google Scholar

[26] S. A. Hashemifard, A. F. Ismail, and T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: Experimental, Journal of Colloid and Interface Science, vol. 359, pp.359-370.

DOI: 10.1016/j.jcis.2011.03.077

Google Scholar

[27] G. Defontaine, A. Barichard, S. Letaief, C. Feng, T. Matsuura, and C. Detellier, Nanoporous polymer " Clay hybrid membranes for gas separation, Journal of Colloid and Interface Science, vol. 343, pp.622-627.

DOI: 10.1016/j.jcis.2009.11.048

Google Scholar