Adsorption of Azo Dye Orange II by Supported TiO2: A Review

Article Preview

Abstract:

The supported TiO2 photocatalyst has been reported for the photodegradation of different organic pollutants. These supported TiO2 photocatalysts include metal and non metal doped TiO2 photocatalysts. The photodegradation can be explained in terms of adsorption. The adsorption of the dye is an significant and obvious parameter in the photodegradation process. The photodegradation is directly related to the adsorbed quantities of the pollutant onto the surface of adsorbant. Adsorption of Orange II, an azo dye has been reported using different adsorbents like fly ash, activated carbon and porous titanium dioxide. This review presents a comparison of maximum adsorption capacities (Qm; mg.g–1) and Langmuir adsorption constant (Kads; L.mg–1) for the adsorbents reported in previous studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

770-774

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Swamy and J. A. Ramsay, The evaluation of white rot fungi in the decoloration of textile dyes, Enzyme and Microbial Technology, vol. 24, pp.130-137, (1999).

DOI: 10.1016/s0141-0229(98)00105-7

Google Scholar

[2] E. Forgacs, T. Cserháti, and G. Oros, Removal of synthetic dyes from wastewaters: a review, Environment International, vol. 30, pp.953-971, (2004).

DOI: 10.1016/j.envint.2004.02.001

Google Scholar

[3] S. M. Ghoreishi and R. Haghighi, Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chemical Engineering Journal, vol. 95, pp.163-169, (2003).

DOI: 10.1016/s1385-8947(03)00100-1

Google Scholar

[4] W. Azmi, R. K. Sani, and U. C. Banerjee, Biodegradation of triphenylmethane dyes, Enzyme and Microbial Technology, vol. 22, pp.185-191, (1998).

DOI: 10.1016/s0141-0229(97)00159-2

Google Scholar

[5] H. M. F. Freundlich, Over the adsorption in solution, Journal of Physical Chemistry, vol. 57, pp.385-471, (1906).

Google Scholar

[6] I. Langmuir, Adsorption of gases on plain surfaces of glass mica platinum, Journal of American Chemical Society, vol. 40, pp.1361-1403, (1918).

DOI: 10.1021/ja02242a004

Google Scholar

[7] N. Guettaï and H. Ait Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study, Desalination, vol. 185, pp.439-448, (2005).

DOI: 10.1016/j.desal.2005.04.049

Google Scholar

[8] V. K. Gupta, A. Mittal, V. Gajbe, and J. Mittal, Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya, Industrial & Engineering Chemistry Research, vol. 45, pp.1446-1453, (2006).

DOI: 10.1021/ie051111f

Google Scholar

[9] S. -A. Ong, Eiichi Toorisaka, Makoto Hirata, and Tadashi Hano, Decolorization behavior of azo dye with various Co-substrate dosages under granular activated Carbon-biofilm configured packed column operation, ARPN Journal of Engineering and Applied Sciences, vol. 1, (2006).

DOI: 10.1007/s10311-006-0086-6

Google Scholar

[10] J. H. Ramirez, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, C. Moreno-Castilla, C. A. Costa, and L. M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Applied Catalysis B: Environmental, vol. 75, pp.312-323, (2007).

DOI: 10.1016/j.apcatb.2007.05.003

Google Scholar

[11] P. Ji, J. Zhang, F. Chen, and M. Anpo, Study of adsorption and degradation of Acid Orange 7 on the surface of CeO2 under visible light irradiation, Applied Catalysis B: Environmental, vol. 85, pp.148-154, (2009).

DOI: 10.1016/j.apcatb.2008.07.004

Google Scholar

[12] K. Bourikas, M. Stylidi, D. I. Kondarides, and X. E. Verykios, Adsorption of Acid Orange 7 on the Surface of Titanium Dioxide, Langmuir, vol. 21, pp.9222-9230, (2005).

DOI: 10.1021/la051434g

Google Scholar

[13] L. Abramian and H. El-Rassy, Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel, Chemical Engineering Journal, vol. 150, pp.403-410, (2009).

DOI: 10.1016/j.cej.2009.01.019

Google Scholar

[14] A. Mills, C. O'Rourke, V. Kalousek, and J. Rathousky, Adsorption and photocatalytic and photosensitised bleaching of acid orange 7 on multilayer mesoporous films of TiO2, Journal of Hazardous Materials, vol. 211–212, pp.182-187, 4/15/ (2012).

DOI: 10.1016/j.jhazmat.2011.07.116

Google Scholar

[15] C. Hsiu-Mei, C. Ting-Chien, P. San-De, and H. -L. Chiang, Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers, Journal of Hazardous Materials, vol. 161, pp.1384-1390, 1/30/ (2009).

DOI: 10.1016/j.jhazmat.2008.04.102

Google Scholar

[16] S. Athalathil, F. Stüber, C. Bengoa, J. Font, A. Fortuny, and A. Fabregat, Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II, Journal of Hazardous Materials, vol. 267, pp.21-30, (2014).

DOI: 10.1016/j.jhazmat.2013.12.031

Google Scholar

[17] K. Tanaka, K. Padermpole, and T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Research, vol. 34, pp.327-333, (2000).

DOI: 10.1016/s0043-1354(99)00093-7

Google Scholar

[18] P. Janoš, H. Buchtová, and M. Rýznarová, Sorption of dyes from aqueous solutions onto fly ash, Water Research, vol. 37, pp.4938-4944, (2003).

DOI: 10.1016/j.watres.2003.08.011

Google Scholar

[19] S. Aber, N. Daneshvar, M.S. Soroureddin, A. Chabouk, and K. Asadpour-Zeynali, Study of Acid Orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network, in 9th Internation Conference on Environmental Science and Technology, Rhodes island, Greece, 1-3 September, (2005).

DOI: 10.1016/j.desal.2006.03.592

Google Scholar