Aspects of Carbon Dioxide Mitigation by Nannochloropsis oculata Cultured in a Photobioreactor

Article Preview

Abstract:

This paper primarily presents on carbon dioxide mitigation by marine microalgae. Among the potential marine microalgae, Nannochloropsis oculata has been identified as a promising species which can be utilized to reduce carbon dioxide concentration via photosynthesis process. The growth of N. oculata and lipid synthesis for biodiesel production is influenced by various aspects. The aspects that are focused in this paper include light source and intensity, temperature, carbon dioxide concentration, and photobioreactor design. Besides, emerging technologies that are able to increase the efficiency of carbon dioxide reduction were also highlighted. As a whole, N. oculata might play a key role in reducing the global carbon dioxide emission as well as enhancing the biodiesel production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

775-779

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. K. Mondal, H. K. Balsora, P. Varshney, Progress and trends in carbon dioxide capture/separation technologies: A review, Energy. 46 (2012) 431-441.

DOI: 10.1016/j.energy.2012.08.006

Google Scholar

[2] L. Cheng, L. Zhang, H. Chen, C. Gao, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Separation and Purification Technology. 50 (2006) 324-329.

DOI: 10.1016/j.seppur.2005.12.006

Google Scholar

[3] L. Brennon, P. Owende, Biofuels from microalgae – A review of technologies for production, processing and extractions of biofuel and co-products, Renewable and Sustainable Energy Rev. 14 (2010) 557-577.

DOI: 10.1016/j.rser.2009.10.009

Google Scholar

[4] S. Chiu, C. Kao, M. Tsai, S. Ong, C. Chen, and C. Lin, Lipid accumulation and carbon dioxide utilization of Nannochloropsis oculata in response to carbon dioxide aeration, Bioresource Technology. 100 (2009) 833-838.

DOI: 10.1016/j.biortech.2008.06.061

Google Scholar

[5] L. Borges, J. A. Moron-Villarreyes, M. G. M. D'Oca, P. C. Abreu, Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii, Biomass and Bioenergy. 35 (2011).

DOI: 10.1016/j.biombioe.2011.09.003

Google Scholar

[6] J. M. S. Rocha, J. E. C. Garcia, M. H. F. Henriques, Growth aspects of the marine microalga Nannochloropsis gaditana, Biomolecular Engineering. 20 (2003) 237-242.

DOI: 10.1016/s1389-0344(03)00061-3

Google Scholar

[7] A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, M. D. Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chemical Engineering and Processing. 48 (2009).

DOI: 10.1016/j.cep.2009.03.006

Google Scholar

[8] A. S. Pedro, C. V. Gonzalez-Lopez, F. G. Axien, E. Molina-Grima, Marine microalgae selection and culture conditions optimization for biodiesel production, Bioresource Technology. 134 (2013) 353-361.

DOI: 10.1016/j.biortech.2013.02.032

Google Scholar

[9] Y. Chen, M. Lee, Double-power double-heterostructure Light-emitting diodes in microalgae, Spirulina platensis and Nannochloropsis oculata cultures, Journal of Marine Science and Technology. 20 (2012) 233-236.

DOI: 10.51400/2709-6998.1843

Google Scholar

[10] R. Kandilian, E. Lee, L. Pilon, Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra, Bioresource Technology. 137 (2013) 63-73.

DOI: 10.1016/j.biortech.2013.03.058

Google Scholar

[11] L. Rodolfi, G.C. Zittelli, L. Barsanti, G. Rosati, M. R. Tredici, Growth medium recycling in Nannochloropsis sp. mass cultivation, Biomolecular Engineering. 20 (2003) 243-248.

DOI: 10.1016/s1389-0344(03)00063-7

Google Scholar

[12] H. T. Hsueh, W. J. Li, H. H. Chen, H. Chu, Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. TCL-1 and Nannochlropsis oculata, Journal of phytochemistry and photobiology B; Biology. 95 (2009) 33-39.

DOI: 10.1016/j.jphotobiol.2008.11.010

Google Scholar

[13] A. Richmond, Z. Cheng-Wu, Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. Outdoors, Journal of Biotechnology. 85 (2001) 259-269.

DOI: 10.1016/s0168-1656(00)00353-9

Google Scholar

[14] J. E. Keffer, G. T. Kleinheinz, Use of Chlorella vulgaris for carbon dioxide mitigation in a photobioreactor, Journal of Industrial, Microbiology and Biotechnology. 29 (2002) 275-280.

DOI: 10.1038/sj.jim.7000313

Google Scholar

[15] G. Zhao, J. Yu, F. Jiang, X. Zhang, T. Tan, The effect of different tropic modes on lipid accumulation of Scenedesmus quadricauda, Bioresource Technology. 114 (2012) 466-471.

DOI: 10.1016/j.biortech.2012.02.129

Google Scholar