[1]
M. K. Mondal, H. K. Balsora, P. Varshney, Progress and trends in carbon dioxide capture/separation technologies: A review, Energy. 46 (2012) 431-441.
DOI: 10.1016/j.energy.2012.08.006
Google Scholar
[2]
L. Cheng, L. Zhang, H. Chen, C. Gao, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Separation and Purification Technology. 50 (2006) 324-329.
DOI: 10.1016/j.seppur.2005.12.006
Google Scholar
[3]
L. Brennon, P. Owende, Biofuels from microalgae – A review of technologies for production, processing and extractions of biofuel and co-products, Renewable and Sustainable Energy Rev. 14 (2010) 557-577.
DOI: 10.1016/j.rser.2009.10.009
Google Scholar
[4]
S. Chiu, C. Kao, M. Tsai, S. Ong, C. Chen, and C. Lin, Lipid accumulation and carbon dioxide utilization of Nannochloropsis oculata in response to carbon dioxide aeration, Bioresource Technology. 100 (2009) 833-838.
DOI: 10.1016/j.biortech.2008.06.061
Google Scholar
[5]
L. Borges, J. A. Moron-Villarreyes, M. G. M. D'Oca, P. C. Abreu, Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii, Biomass and Bioenergy. 35 (2011).
DOI: 10.1016/j.biombioe.2011.09.003
Google Scholar
[6]
J. M. S. Rocha, J. E. C. Garcia, M. H. F. Henriques, Growth aspects of the marine microalga Nannochloropsis gaditana, Biomolecular Engineering. 20 (2003) 237-242.
DOI: 10.1016/s1389-0344(03)00061-3
Google Scholar
[7]
A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, M. D. Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chemical Engineering and Processing. 48 (2009).
DOI: 10.1016/j.cep.2009.03.006
Google Scholar
[8]
A. S. Pedro, C. V. Gonzalez-Lopez, F. G. Axien, E. Molina-Grima, Marine microalgae selection and culture conditions optimization for biodiesel production, Bioresource Technology. 134 (2013) 353-361.
DOI: 10.1016/j.biortech.2013.02.032
Google Scholar
[9]
Y. Chen, M. Lee, Double-power double-heterostructure Light-emitting diodes in microalgae, Spirulina platensis and Nannochloropsis oculata cultures, Journal of Marine Science and Technology. 20 (2012) 233-236.
DOI: 10.51400/2709-6998.1843
Google Scholar
[10]
R. Kandilian, E. Lee, L. Pilon, Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra, Bioresource Technology. 137 (2013) 63-73.
DOI: 10.1016/j.biortech.2013.03.058
Google Scholar
[11]
L. Rodolfi, G.C. Zittelli, L. Barsanti, G. Rosati, M. R. Tredici, Growth medium recycling in Nannochloropsis sp. mass cultivation, Biomolecular Engineering. 20 (2003) 243-248.
DOI: 10.1016/s1389-0344(03)00063-7
Google Scholar
[12]
H. T. Hsueh, W. J. Li, H. H. Chen, H. Chu, Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. TCL-1 and Nannochlropsis oculata, Journal of phytochemistry and photobiology B; Biology. 95 (2009) 33-39.
DOI: 10.1016/j.jphotobiol.2008.11.010
Google Scholar
[13]
A. Richmond, Z. Cheng-Wu, Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. Outdoors, Journal of Biotechnology. 85 (2001) 259-269.
DOI: 10.1016/s0168-1656(00)00353-9
Google Scholar
[14]
J. E. Keffer, G. T. Kleinheinz, Use of Chlorella vulgaris for carbon dioxide mitigation in a photobioreactor, Journal of Industrial, Microbiology and Biotechnology. 29 (2002) 275-280.
DOI: 10.1038/sj.jim.7000313
Google Scholar
[15]
G. Zhao, J. Yu, F. Jiang, X. Zhang, T. Tan, The effect of different tropic modes on lipid accumulation of Scenedesmus quadricauda, Bioresource Technology. 114 (2012) 466-471.
DOI: 10.1016/j.biortech.2012.02.129
Google Scholar