[1]
L. Dong, Y. Min, H. Jianying, Y. Zhang, H. Chang, F. Jin, Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river, Water Res., 42 (2008) 307-317.
DOI: 10.1016/j.watres.2007.07.016
Google Scholar
[2]
W. Xu, G. Zhang, X. Li, S. Zou, P. Li, Z. Hu, J. Li, Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China, Water Res., 41 (2007) 4526-4534.
DOI: 10.1016/j.watres.2007.06.023
Google Scholar
[3]
M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402-417.
DOI: 10.1016/j.envint.2008.07.009
Google Scholar
[4]
K. Kummere, Antibiotics in the aquatic environment, Chemosphere, 75 (2009) 417-434.
Google Scholar
[5]
J.L. Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants, Environ. Poll. ¸ 157 (2009) 2893-2902.
DOI: 10.1016/j.envpol.2009.05.051
Google Scholar
[6]
C. Garafalo, C. Viragnoli, G. Zandri, L. Aquilanti, D. Bordoni, A. Osimani, F. Clementi, F. Biavasco, Direct detection of antibiotics resistance genes in specimens of chicken and pork meat, Int. J. Food Microbiol, 113 (2007) 75-83.
DOI: 10.1016/j.ijfoodmicro.2006.07.015
Google Scholar
[7]
A. Gulkowska, H.W. Leung, M.K. So, S. Taniyasu, N. Yamashita, Leo W.Y. Yeung, Bruce J. Richardson, A.P. Lei, J.P. Giesy, Paul K.S. Lam, Removal of antibiotics from wastewater by sewage treatment facilities in Hongkong and Shenzhen, China, Water Res., 42 (2008).
DOI: 10.1016/j.watres.2007.07.031
Google Scholar
[8]
Y. Wang, J. B. Liang, T.C. Loh, Y. W. Ho, Use of Antibiotics in Pig and Poultry Farms in Malaysia, in: Conference on Sustainable Animal Agriculture for Developing Countries, 2009, http: /ibs. upm. edu. my/~saadc2009/slides/10-11-09-Corus1-1605-1620. pdf, retrieved on 20 January (2012).
Google Scholar
[9]
M. O. Uslu, I. A. Balcioglu, Comparison of the ozonation and fenton process performance for the treatment of antibiotic containing manure, Sci. Tot. Environ., 407 (2009) 3450-3458.
DOI: 10.1016/j.scitotenv.2009.01.045
Google Scholar
[10]
A. J. Bauger, J. Hensen, P. H. Krogh, Effects of antibiotics oxyteracycline and tylosin on soil fauna, Chemosphere, 40 (2000) 751-757.
DOI: 10.1016/s0045-6535(99)00449-x
Google Scholar
[11]
Y. Wang, L. Wang, F. Li, J. Liang, Y. Li, J. Dai, T.C. Loh, Y.W. Ho, Effects of oxytetracycline and sulfachloropyridazine residues on the reductive activity of Shewanella decoloratis S12, J. Agric. Food Chem., 57 (2009) 878-5883.
DOI: 10.1021/jf900641e
Google Scholar
[12]
O. A. Arikan, C. Rice, E. Codling, Occurence of antibiotics and hormones in a major agricultural watershed, Desalination, 226 (2008) 21-133.
DOI: 10.1016/j.desal.2007.01.238
Google Scholar
[13]
I. R. Bautiz, R. F. P. Nogueira, Degradation of tetracycline by photo-Fenton process-Solar irradiation and matrix effect, J. Photochem. Photobiol. A, 187 (2007) 33-39.
Google Scholar
[14]
K. Li, A. Yediler, M. Yang, S. Schulte-Hostede, M. H. Wong, Ozonation of oxytetrcycline and toxicological assessment of its oxidation by-products, Chemosphere, 72 (2008) 472-478.
DOI: 10.1016/j.chemosphere.2008.02.008
Google Scholar
[15]
Y. Chen, C. Hu, J. Qu, M. Yang, Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline under simulate sunglight irradiation, J. Photochem. Photobiol. A, 197 (2008) 81-87.
DOI: 10.1016/j.jphotochem.2007.12.007
Google Scholar
[16]
J. Shaojun, Z. Shouron, Y. Daqiang, W. Lianhong, C. Liangyan, Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process, J. Environ. Sci., 20 (2008) 806-813.
DOI: 10.1016/s1001-0742(08)62130-0
Google Scholar
[17]
R. Xuan, L. Arisi, Q. Wang, S. R. Yates, K. C. Biswas, Hydrolysis and photolysis of oxytetracycline in aqueous solution, J. Environ. Sci. Health B, 45 (2010) 73-81.
DOI: 10.1080/03601230903404556
Google Scholar
[18]
C. Zhao, H. Deng, Y. Li, Z. Liu, Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation, J. Hazard. Mater., 176 (2010) 884-892.
DOI: 10.1016/j.jhazmat.2009.11.119
Google Scholar
[19]
X. Wen, Y. Jia, J. Li, Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidise prepared from Phanerochaete chrysosporium, J. Hazard. Mater., 177 (2010) 924-928.
DOI: 10.1016/j.jhazmat.2010.01.005
Google Scholar
[20]
S. Lin, W. Chen, C. Liu, Study on photochemical degradation of Oxytetracycline with UV-H2O2 process, in: 2nd Conference on Environmental Science and Information Application Technology, (2010) 24-27, doi: 10. 1109/ESIAT. 2010. 5568939.
DOI: 10.1109/esiat.2010.5568939
Google Scholar
[21]
F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen, J. Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process, J. Hazard. Mater., 185 (2011) 1256-1263.
DOI: 10.1016/j.jhazmat.2010.10.040
Google Scholar
[22]
N. K. Shammas, L. K. Wang, Hazardous waste deep-well injection, In: L. K. Wang, N. K. Shammas, Y. T. Hung, Y. T., (Eds. ), Handbook of Advanced Industrial and Hazardous Waste Treatment, CRC Press, Florida, 2009, p.407.
DOI: 10.1201/9781420072228-c20
Google Scholar
[23]
K. A. Loftin, C. D. Adams, M. T. Meyer, and R. Surampalli, Effects of ionic strenght, temperature, and pH on degradation of selected antibiotics, J. Environ. Qual., 37 (2008) 378-386.
DOI: 10.2134/jeq2007.0230
Google Scholar
[24]
A. U. Rahmah, S. Harimurti, A. A. Omar, T. Murugesan, Optimization of Oxytetracycline Mineralization using Box-Behnken Experimental Design inside a UV/H2O2 system, J. App. Sci., 12 (2012) 1154-1159.
DOI: 10.3923/jas.2012.1154.1159
Google Scholar