[1]
CNNIC, Statistical report on Internet development of China, Beijing, (2013).
Google Scholar
[2]
Z. Ding, Y. Jia, B. Zhou, Survey of data mining for microblogs, Journal of Computer Research and Development, 51(4) 691-706 (2014).
Google Scholar
[3]
M. Thelwall, K. Buckley and G. Paltoglou, Sentiment in twitter events, Journal of the American Society for Information Science and Technology, 62(2) 406-418. (2011).
DOI: 10.1002/asi.21462
Google Scholar
[4]
B. Liu, L. Zhang, A survey of opinion mining and sentiment analysis, New York, (2012).
Google Scholar
[5]
Y. Shen, S. Li, L. Zheng, et al, Emotion mining research on micro-blog, 1st IEEE Symposium on Web Society, Lanzhou, 2009, pp.71-75.
DOI: 10.1109/sws.2009.5271711
Google Scholar
[6]
S. Feng, Y. Fu, F. Yang, et al, Blog sentiment orientation analysis based on dependency parsing, Journal of Computer Research and Development, 49(11) 2395-2406. (2012).
Google Scholar
[7]
F. Guo, G. Zhou, Research on micro-blog sentiment orientation analysis based on improved dependency parsing, 2013 3rd International Conference on Consumer Electronics, Communications and Networks, Shen Zhen 2013, pp.546-550.
DOI: 10.1109/cecnet.2013.6703390
Google Scholar
[8]
A. Go, R. Bhayani and L. Huang, Twitter sentiment classification using distant supervision, CS224N Project Report, Stanford, 2009, pp.1-12.
Google Scholar
[9]
L. Barbosa, J. Feng, Robust sentiment detection on twitter from Biased and noisy data, Proc. of the 23rd International Conference on Computational Linguistics, Posters Volume. Association for Computational Linguistics, Uppsala, 2010, pp.36-44.
Google Scholar
[10]
L. Xie, M. Zhou, and M. Sun, Hierarchical structure based hybrid approach to sentiment analysis of Chinese micro blog and its feature extraction, Journal of Chinese Information Processing, 26(1) 73-83. (2012).
Google Scholar
[11]
D.M. Blei, Y. Ng, and M.I. Jordan, Latent dirichlet allocation, The Journal of Machine Learning Research, 3 993-1022. (2003).
Google Scholar
[12]
C. Lin, Y. He, Joint sentiment/topic model for sentiment analysis, Proc. of the 18th ACM conference on Information and knowledge management, San Francisco, 2009, pp.375-384.
DOI: 10.1145/1645953.1646003
Google Scholar
[13]
Y. Jo, A. Oh, Aspect and sentiment unification model for online review analysis, Proc. of the fourth ACM international conference on Web search and data mining, Hong Kong, 2011, pp.815-824.
DOI: 10.1145/1935826.1935932
Google Scholar
[14]
W. Ding, X. Song, and L. Guo, et al, A novel hybrid HDP-LDA model for sentiment analysis, 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Atlanta, 2013, pp.329-336.
DOI: 10.1109/wi-iat.2013.47
Google Scholar
[15]
Y.W. Teh, M.I. Jordan, M.J. Bea, et al, Hierarchical dirichlet processes, Journal of the American Statistical Association, 101(476) 1566-1581. ( 2006).
DOI: 10.1198/016214506000000302
Google Scholar
[16]
H. Liu, DEPENDENCY GRAMMAR:from theory to practice, Beijing, (2009).
Google Scholar
[17]
J. Zhou, F. Wang, and D. Zeng, Hierarchical dirichlet processes and their applications: a survey, ACTA AUTOMATICA SINICA, 04 389-407. (2011).
DOI: 10.3724/sp.j.1004.2011.00389
Google Scholar