[1]
Bates D. Jumps and volatility: exchange rate processes implicit in deutsche mark options. Rev Financ Stud. 1996, 9: 96-107.
DOI: 10.1093/rfs/9.1.69
Google Scholar
[2]
Carr P, Madan D. Option valuation using the fast Fourier transforms [J]. Journal of computational finance, 1999, 2(4): 61-73.
DOI: 10.21314/jcf.1999.043
Google Scholar
[3]
F. Black, M. Scholes, The pricing of options and corporate liabilities.J. Polit. Econ. 1973, 63: 7-654.
Google Scholar
[4]
Hull J, White A. The pricing of options on assets with stochastic volatility.J. Finance, 1987, 42(2): 281-300.
DOI: 10.1111/j.1540-6261.1987.tb02568.x
Google Scholar
[5]
Jiang GJ. Testing options pricing models with stochastic volatility, random jump and stochastic interest rate. Int Rev Financ. 2002, 3: 72-233.
DOI: 10.1111/j.1369-412x.2002.00040.x
Google Scholar
[6]
Jiexiang Huang, Wenli Zhu, Xinfeng Ruan. Option pricing using the fast Fourier transform under the double exponential jump model with stochastic volatility and stochastic intensity. Journal of Computational and Applied Mathematics, 2014, 263: 152-159.
DOI: 10.1016/j.cam.2013.12.009
Google Scholar
[7]
Merton RC. Option pricing when underlying stock returns are discontinuous. J Financ Econ, 1976, 3: 44-125.
DOI: 10.1016/0304-405x(76)90022-2
Google Scholar
[8]
Pillay E. FFT based option pricing under a mean reverting process with stochastic volatility and jumps. J. Comput Appl Math. 2011, 16: 9-1752.
DOI: 10.1016/j.cam.2010.10.024
Google Scholar
[9]
Scott LO. Pricing stock options in a jump-diffusion model with stochastic volatility and interest rate: applications of Fourier inversion method. Math Financ 1997, 7: 26-413.
DOI: 10.1111/1467-9965.00039
Google Scholar
[10]
S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency option, Rev. Finance. Stud 1993, 6 (3): 327-343.
DOI: 10.1093/rfs/6.2.327
Google Scholar
[11]
S. Zhang, L.H. Wang. A fast numerical approach to option pricing with stochastic interest rate, stochastic volatility and double jumps. Commun Nonlinear Sci Numer Simulat. 2013, 18: 32-36.
DOI: 10.1016/j.cnsns.2012.11.010
Google Scholar