An Effective Nonparametric Quantile Regression Method for Solving the Crossing Problem in Data Fitting Process

Article Preview

Abstract:

Nonparametric quantile regression method can be used as the first choice for some biostatistical data. Since the nonparametric quantile regression curves are estimated individually, the quantile curves can cross, leading to an invalid distribution estimation for the response. A simple nonparametric quantile regression method is proposed to avoid the crossing problem. The method uses nonparametric conditional density function estimate instead of the conditional distribution estimate to assure quantile regression function monotonous. Both a simulation study and an analysis of real salmon lustrousness data show the significant improvement of the method in solving the quantile crossing problem for some kind of biological data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-249

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Keonker and G. Bassett, Regression Quantiles, Ecnometrica. Vol. 46(1978), pp.33-50.

Google Scholar

[2] K. Yu, Z. Lu, and J. Stander, Quantile regression applications and current research areas, The Statistican. Vol. 52 (2003), pp.331-350.

Google Scholar

[3] R. Koenker, Quantile regression. Cambridge University Press , (2005), pp.125-134.

Google Scholar

[4] K. Yu and M.C. Jones, A comparison of local constant and local linear regression quantile estimation, Computational statistics and data analysis. Vol. 25 (1997), pp.159-166.

DOI: 10.1016/s0167-9473(97)00006-6

Google Scholar

[5] K. Yu and M. C. Jones, Local linear quantile regression, Journal of the American Statistical Association, Vol. 93 (1998), pp.228-237.

DOI: 10.1080/01621459.1998.10474104

Google Scholar

[6] P. Hall, R.C.L. Wolff, and Q. Yao, Methods for estimating a conditional distribution, Journal of the American Statistical Association, Vol. 94(1999), pp.154-163.

DOI: 10.1080/01621459.1999.10473832

Google Scholar

[7] J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, New York: Springer-Verlag , (2003), pp.56-75.

Google Scholar

[8] J. Fan, T. H. Yim, A crossvalidation method for estimating conditional densities, Biometrika, Vol. 91 (2004), pp.819-834.

DOI: 10.1093/biomet/91.4.819

Google Scholar

[9] P. Hall, J. Racine, and Q. Li, Cross-validation and the estimation of conditional probability densities, Journal of the American Statistical Association, Vol. 99 (2004), pp.1015-1026.

DOI: 10.1198/016214504000000548

Google Scholar

[10] R. J. Hyndman, D. M. Bashtannyk and G. K. Grunwald, Estimating and visualizing conditional densities, J. Comp. Graph. Statist, Vol. 5(1996), p.315–336.

DOI: 10.1080/10618600.1996.10474715

Google Scholar

[11] D. M. Bastannyk and R. J. Hydman, Bandwidth selection for kernel conditional density estimation, Computational statistics and data analysis, Vol. 36 (2001), p.279–298.

DOI: 10.1016/s0167-9473(00)00046-3

Google Scholar

[12] M. C. Jones, J.S. Marron, and S.J. Sheather, A brief survey of bandwith selection for density estimation, Journal of the American Statistical Association, Vol. 91(1996), pp.401-407.

DOI: 10.1080/01621459.1996.10476701

Google Scholar

[13] X. Wang, Nonparametric statistics, Beijing: China Renmin University Press, Beijing, Beijing, (2000), pp.79-101.

Google Scholar