Hopf Bifurcation Analysis in a Modified Optically Injected Semiconductor Lasers Model

Article Preview

Abstract:

In this paper, a modified optically injected semiconductor lasers model is studied in detail. More precisely, we study the stability of the equilibrium points and basic dynamic properties of the autonomous system by means of nonlinear dynamics theory. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the stability and the conditions for generating Hopf bifurcation of the equilibria are derived. Then, a numerical example is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-260

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. N. Lorenz. Deterministic non-periodic flow, J. Atmos. Sci., Vol. 20(1) (1963), pp.130-141.

Google Scholar

[2] Amaral, F. M., Alberto, L. F. C. Stability region bifurcations of nonlinear autonomous dynamical systems: Type-zero saddle-node bifurcations, Int. J. Rob. Nonlin. Contr. Vol. 21 (2011) p.591–612.

DOI: 10.1002/rnc.1605

Google Scholar

[3] M.M. El-Dessoky, M.T. Yassen , E. Saleh , E.S. Aly , Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems, Applied Mathematics and Computation Vol. 218 (2012) p.11859–11870.

DOI: 10.1016/j.amc.2012.05.048

Google Scholar

[4] Xingwu Chen, Wentao Huang, Valery G. Romanovski, Weinian Zhang, Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system, Journal of Computational and Applied Mathematics Vol. 245 (2013) p.86–96.

DOI: 10.1016/j.cam.2012.12.003

Google Scholar

[5] Xiong Wang, Guanrong Chen, A chaotic system with only one stable equilibrium, Commun Nonlinear Sci Numer Simulat Vol. 17 (2012) p.1264–1272.

Google Scholar

[6] J. Sotomayor, L. F. Mello, and D. C. Braga, Bifurcation analysis of the Watt governor system, Computational & Applied Mathematics, Vol. 26, (2007) p.19–44.

DOI: 10.1590/s0101-82052007000100002

Google Scholar

[7] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 of Applied Mathematical Sciences, Springer, New York, NY, USA, 3rd edition, (2004).

Google Scholar

[8] F.S. Dias, L.F. Mello, J-G Zhang, Nonlinear analysis in a Lorenz-like system, Nonlinear Analysis: Real World Applications Vol. 11 (2010) pp.3491-3500.

DOI: 10.1016/j.nonrwa.2009.12.010

Google Scholar

[9] Tsukuru Katsuyama, Development of Semiconductor Laser for Optical Communication, Sei Technical Review, Vol. 29 (2009) pp.13-19.

Google Scholar

[10] S. Banerjee, L. Rondoni, S. Mukhopadhyay Synchronization of time delayed semiconductor lasers and its applications in digital cryptography, Optics Communications, Volume 284, (2011) p.4623–4634.

DOI: 10.1016/j.optcom.2011.06.009

Google Scholar

[11] F.Y. Lin, J.M. Liu, Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback, Optics Communications, Vol. 221 (2003) p.173–180.

DOI: 10.1016/s0030-4018(03)01466-4

Google Scholar

[12] I. Al–D. H. Al–Saidi, A. H. Kareem P, Instabilities and chaos in optically injected semiconductor lasers, Journal of Basrah Researches (Sciences) Vol. 38. (2012) pp.20-28.

Google Scholar

[13] B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, Excitability in optically injected semiconductor lasers: Contrasting quantumwell-and quantum-dot-based devices, Physical Review E 83, 026207 (2011).

DOI: 10.1103/physreve.83.026207

Google Scholar

[14] Xiaofeng Li, Wei Pan, Bin Luo, Dong Ma, Yong Wang, Nuohan Li. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser Chaos, Solitons and Fractals, Vol. 27 (2006) p.1387–1394.

DOI: 10.1016/j.chaos.2005.05.011

Google Scholar

[15] Konstantinos E. Chlouverakis, Michael J. Adams. Stability maps of injection-locked laser diodes using the largest Lyapunov exponent, Optics Communications Vol. 216 (2003) p.405–412.

DOI: 10.1016/s0030-4018(02)02357-x

Google Scholar