[1]
E. N. Lorenz. Deterministic non-periodic flow, J. Atmos. Sci., Vol. 20(1) (1963), pp.130-141.
Google Scholar
[2]
Amaral, F. M., Alberto, L. F. C. Stability region bifurcations of nonlinear autonomous dynamical systems: Type-zero saddle-node bifurcations, Int. J. Rob. Nonlin. Contr. Vol. 21 (2011) p.591–612.
DOI: 10.1002/rnc.1605
Google Scholar
[3]
M.M. El-Dessoky, M.T. Yassen , E. Saleh , E.S. Aly , Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems, Applied Mathematics and Computation Vol. 218 (2012) p.11859–11870.
DOI: 10.1016/j.amc.2012.05.048
Google Scholar
[4]
Xingwu Chen, Wentao Huang, Valery G. Romanovski, Weinian Zhang, Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system, Journal of Computational and Applied Mathematics Vol. 245 (2013) p.86–96.
DOI: 10.1016/j.cam.2012.12.003
Google Scholar
[5]
Xiong Wang, Guanrong Chen, A chaotic system with only one stable equilibrium, Commun Nonlinear Sci Numer Simulat Vol. 17 (2012) p.1264–1272.
Google Scholar
[6]
J. Sotomayor, L. F. Mello, and D. C. Braga, Bifurcation analysis of the Watt governor system, Computational & Applied Mathematics, Vol. 26, (2007) p.19–44.
DOI: 10.1590/s0101-82052007000100002
Google Scholar
[7]
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 of Applied Mathematical Sciences, Springer, New York, NY, USA, 3rd edition, (2004).
Google Scholar
[8]
F.S. Dias, L.F. Mello, J-G Zhang, Nonlinear analysis in a Lorenz-like system, Nonlinear Analysis: Real World Applications Vol. 11 (2010) pp.3491-3500.
DOI: 10.1016/j.nonrwa.2009.12.010
Google Scholar
[9]
Tsukuru Katsuyama, Development of Semiconductor Laser for Optical Communication, Sei Technical Review, Vol. 29 (2009) pp.13-19.
Google Scholar
[10]
S. Banerjee, L. Rondoni, S. Mukhopadhyay Synchronization of time delayed semiconductor lasers and its applications in digital cryptography, Optics Communications, Volume 284, (2011) p.4623–4634.
DOI: 10.1016/j.optcom.2011.06.009
Google Scholar
[11]
F.Y. Lin, J.M. Liu, Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback, Optics Communications, Vol. 221 (2003) p.173–180.
DOI: 10.1016/s0030-4018(03)01466-4
Google Scholar
[12]
I. Al–D. H. Al–Saidi, A. H. Kareem P, Instabilities and chaos in optically injected semiconductor lasers, Journal of Basrah Researches (Sciences) Vol. 38. (2012) pp.20-28.
Google Scholar
[13]
B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, Excitability in optically injected semiconductor lasers: Contrasting quantumwell-and quantum-dot-based devices, Physical Review E 83, 026207 (2011).
DOI: 10.1103/physreve.83.026207
Google Scholar
[14]
Xiaofeng Li, Wei Pan, Bin Luo, Dong Ma, Yong Wang, Nuohan Li. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser Chaos, Solitons and Fractals, Vol. 27 (2006) p.1387–1394.
DOI: 10.1016/j.chaos.2005.05.011
Google Scholar
[15]
Konstantinos E. Chlouverakis, Michael J. Adams. Stability maps of injection-locked laser diodes using the largest Lyapunov exponent, Optics Communications Vol. 216 (2003) p.405–412.
DOI: 10.1016/s0030-4018(02)02357-x
Google Scholar