A Composite Model via Proportional Intensity Function and Additive Hazard Function

Article Preview

Abstract:

This paper mainly discusses a composite model which the end time is an additive hazard function and the recurrent event process is a proportional intensity function, the covariate is time-independent, and censoring is dependent on recurrent events process and end times. Based on the likelihood method, Delta method, U-statistic method and the idea of general estimation equation, the estimation of unknown parameters and unknown functions in this composite model is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.L. Prentice, B.J. Williams, A.V. Peterson: Biometrika Vol. 68 (1981), pp.373-379.

Google Scholar

[2] P.K. Andersen, R.D. Gill: The Annals of Statistics Vol. 10 (1982), pp.1100-1120.

Google Scholar

[3] R.J. Cook: The Statistical Analysis of Recurrent Events (Springer, New York, 2007).

Google Scholar

[4] D. Ghosh, D.Y. Lin: Biometrics Vol. 59 (2003), pp.877-885.

Google Scholar

[5] D. Zeng, D.Y. Lin: Biometrics Vol. 65 (2009), pp.746-752.

Google Scholar

[6] V. Rondeau, et al: Biostatistics Vol. 8 (2007), pp.708-721.

Google Scholar

[7] G.G. Nielsen, R.D. Gill, P.K. Andersen, T.I.A. Sorensen: Scand. J. Stat Vol. 19 (1992), pp.25-43.

Google Scholar

[8] M.S. Pepe, J. Cai: J. Amer. Statist. Assoc Vol. 88 (1993), pp.811-820.

Google Scholar

[9] D.Y. Lin, L.J. Wei, I. Yang, Z. Ying: J. R. Statist. Statist. Soc, B Vol. 62 (2000), pp.711-730.

Google Scholar

[10] X. Huang, L. Liu: Biometrics Vol. 63 (2007) pp.389-397.

Google Scholar

[11] D.R. Cox: Journal of the Royal Statistical Society Vol. 34 (1972), pp.187-220.

Google Scholar

[12] D.Y. Lin, Z. Ying: Biometrika Vol. 81 (1994), pp.61-71.

Google Scholar

[13] C.Y. Huang, J. Qin, M.C. Wang: Biometrics Vol. 66 (2010), pp.39-49.

Google Scholar

[14] C.P. Farrington, H.J. Whitaker: Journal of the Royal Statistical Society, Series C Vol. 55, (2006), pp.553-594.

Google Scholar

[15] C.Y. Huang, M.C. Wang: J. Amer. Statist. Assoc Vol. 99 (2004), pp.1153-1165.

Google Scholar