Online Tracking via Stabilizer and Attractor

Article Preview

Abstract:

In this paper, we propose a novel, online, long-term tracking algorithm to track objects that possess fairly regular motion. Our tracker contains two terms: stabilizer and attractor. The stabilizer narrows the candidate location of an object at the next frame in a sequence by employing the Kalman filter, which enhances the speed of our tracker and brings stability. The attractor is an inner template of an object consisting of Harris corner pairs. By excluding distractors with a different inner template, our tracker is discriminative and accurate. Experiments on several benchmark sequences show our competitive performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

446-450

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Birchfield. Elliptical head tracking using intensity gradients and color histograms. In CVPR, (1998).

DOI: 10.1109/cvpr.1998.698614

Google Scholar

[2] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput. Surv, 38(4), (2006).

DOI: 10.1145/1177352.1177355

Google Scholar

[3] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. ICCV, (2011).

DOI: 10.1109/iccv.2011.6126251

Google Scholar

[4] C. Bao, Y. Wu, H. Ling, and H. Ji. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach. In CVPR, (2012).

DOI: 10.1109/cvpr.2012.6247881

Google Scholar

[5] X. Mei and H. Ling. Robust visual tracking using L1 minimization. In ICCV, pages 1436–1443, (2009).

Google Scholar

[6] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai. Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection. In CVPR, (2011).

DOI: 10.1109/cvpr.2011.5995421

Google Scholar

[7] L. Sevilla-Lara and E. Learned-Miller. Distribution fields for tracking. In CVPR, (2012).

Google Scholar

[8] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. PAMI, 34(7): 1409–1422, (2012).

Google Scholar

[9] R. E Kalman (1960b). A new approach to linear filtering and prediction problems. Transactions of ASME, Journal of Basic Engineering, 87, 35–45.

Google Scholar

[10] G. Welch and G. Bishop, An introduction to the Kalman filter. Dept. Comput. Sci., Univ. North Carolina, Chapel Hill, Tech. Rep. TR95041, (2000).

Google Scholar

[11] F. Xu and K. Fujimura. Pedestrian detection and tracking with night vision. In IEEE Intelligent Vehicles Symposium, (2002).

DOI: 10.1109/ivs.2002.1187922

Google Scholar

[12] C. Y. Fang, S. W. Chen, C. S. Fuh, Road sign detection and tracking. IEEE Transactions on Vehicular Technology, 52 (5) (2003) 1329–1341.

DOI: 10.1109/tvt.2003.810999

Google Scholar

[13] T. B. Dinh, N. Vo, and G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, (2011).

DOI: 10.1109/cvpr.2011.5995733

Google Scholar