[1]
Xu Chen, Zhao RuiZhen, Gan XiaoBing. Application algorithm of wavelet analysis[M]. Beijing : Publishing House of Science, 2004. w.
Google Scholar
[2]
Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Trans Inform Theory, 1992, 38(2): 617-643.
DOI: 10.1109/18.119727
Google Scholar
[3]
Ma Tao, Li Fei, Yue JianLi. Application of wavelet analysis in geophysics and geodesy[J]. PROGRESS IN GEOPHYSICS, 2003, 18(1): 49~52.
Google Scholar
[4]
Chanpin D A. Wavelet transform: an interpretation of the new method for gravity and magnetic data [J] SongYaoGuo translation, geophysical and geochemical exploration praeger, 1998 (suppl) : 104~108.
Google Scholar
[5]
Hou ZunZe, Yang WenCai. WAVELET TRANSFORM AND MULTI-SCALE ANALYSIS ON GRAVITY ANOMALIES OF CHINA[J]. Chinese Journal of Geophysics, 1997, 40(1): 85~95.
Google Scholar
[6]
Yang WenCai, Shi ZhiQun, Hou ZunZe, Cheng Zhen Yan. Discrete wavelet transform for multiple decomposition of gravity anomalies[J]. CHINESE JOURNAL OF GEOPHYSICS, 2001, 44(4): 534~542.
DOI: 10.1002/cjg2.171
Google Scholar
[7]
Bayer M, Freeden W, Maier T. A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data[J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2001, 63(6): 581~597.
DOI: 10.1016/s1364-6826(00)00234-0
Google Scholar
[8]
DUANEH, BRUCE L. MasteringMatlab 5: a comprehensive tutorial and reference [M ]. USA: Prentice Hal, l (1998).
Google Scholar
[9]
BJARNES1The C++programming language [M ]. USA: Addison wesley Langman Inc., (1997).
Google Scholar
[10]
NING JinSheng , WANG HaiHong , LUO ZhiCai. Downward continuation of gravity signals based on the multiscale edge constraint[J]. Chinese Journal of Geophysics, 2005, 48(1): 63~68.
DOI: 10.1002/cjg2.628
Google Scholar
[11]
MALLAT S. A Theory for Multi-resolution Signal Decomposition: the Wavelet Representation[J]. IEEE Trans on PAMI 1989, 11(7): 674-693.
Google Scholar