[1]
L.M. Pecora T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821-824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[2]
L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectional coupled dynamical systems, Phys. Rev. Lett. 76 (1996) 1816-1819.
DOI: 10.1103/physrevlett.76.1816
Google Scholar
[3]
S.S. Yang, K. Duan, Generalized synchronization in chaotic systems, Chaos Solitons Fractals. 10 (1998) 1703-1707.
DOI: 10.1016/s0960-0779(97)00149-5
Google Scholar
[4]
G. Michael. Rosenblum, S. Arkady. Pikovsky, J¨urgen Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett. 76 (1996) 1804-1807.
DOI: 10.1103/physrevlett.76.1804
Google Scholar
[5]
S. Taherion1, Y.C. Lai, Observability of lag synchronization of coupled chaotic oscillators, Phys. Rev. E. 59 (1999) 6247-6250.
DOI: 10.1103/physreve.59.r6247
Google Scholar
[6]
W. L Li, X. Q Chen, Z. P Shen, Anti-synchronization of two different chaotic systems, Physica A. 387 (2008) 3747- 3750.
Google Scholar
[7]
G. Y Fu , Z. S Li, Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties, Commun Nonlinear Sci Numer Simulat. 16 (2011) 395- 401.
DOI: 10.1016/j.cnsns.2010.05.015
Google Scholar
[8]
M.C. Ho, Y.C. Hung, C.H. Chou, Phase and anti-phase synchronization of two chaotic systems by using active control, Phys. Lett. A. 296 (2002) 43-48.
DOI: 10.1016/s0375-9601(02)00074-9
Google Scholar
[9]
G. H Li, S. P Zhou, Anti-synchronization in different chaotic systems, Chaos Solitons Fractals. 32 (2007) 516-520.
DOI: 10.1016/j.chaos.2006.05.076
Google Scholar
[10]
J.H. Lü, G.R. Chen, S. Zhang, Dynamical analysis of a new chaotic attractor, Int J Bifur Chaos. 12 (2002) 1001-1015.
DOI: 10.1142/s0218127402004851
Google Scholar