Chaos Anti-Synchronization between Chen System and Lu System

Article Preview

Abstract:

Anti-synchronization of two different chaotic systems is investigated. On the basis of Lyapunov theory, adaptive control scheme is proposed when system parameters are unknown, sufficient conditions for the stability of the error dynamics are derived, where the controllers are designed using the sum of the state variables in chaotic systems. Numerical simulations are performed for the Chen and Lu systems to demonstrate the effectiveness of the proposed control strategy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

710-713

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.M. Pecora T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821-824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectional coupled dynamical systems, Phys. Rev. Lett. 76 (1996) 1816-1819.

DOI: 10.1103/physrevlett.76.1816

Google Scholar

[3] S.S. Yang, K. Duan, Generalized synchronization in chaotic systems, Chaos Solitons Fractals. 10 (1998) 1703-1707.

DOI: 10.1016/s0960-0779(97)00149-5

Google Scholar

[4] G. Michael. Rosenblum, S. Arkady. Pikovsky, J¨urgen Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett. 76 (1996) 1804-1807.

DOI: 10.1103/physrevlett.76.1804

Google Scholar

[5] S. Taherion1, Y.C. Lai, Observability of lag synchronization of coupled chaotic oscillators, Phys. Rev. E. 59 (1999) 6247-6250.

DOI: 10.1103/physreve.59.r6247

Google Scholar

[6] W. L Li, X. Q Chen, Z. P Shen, Anti-synchronization of two different chaotic systems, Physica A. 387 (2008) 3747- 3750.

Google Scholar

[7] G. Y Fu , Z. S Li, Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties, Commun Nonlinear Sci Numer Simulat. 16 (2011) 395- 401.

DOI: 10.1016/j.cnsns.2010.05.015

Google Scholar

[8] M.C. Ho, Y.C. Hung, C.H. Chou, Phase and anti-phase synchronization of two chaotic systems by using active control, Phys. Lett. A. 296 (2002) 43-48.

DOI: 10.1016/s0375-9601(02)00074-9

Google Scholar

[9] G. H Li, S. P Zhou, Anti-synchronization in different chaotic systems, Chaos Solitons Fractals. 32 (2007) 516-520.

DOI: 10.1016/j.chaos.2006.05.076

Google Scholar

[10] J.H. Lü, G.R. Chen, S. Zhang, Dynamical analysis of a new chaotic attractor, Int J Bifur Chaos. 12 (2002) 1001-1015.

DOI: 10.1142/s0218127402004851

Google Scholar