A MAC Throughput in the IEEE 802.11ac over Error-Prone Channel

Article Preview

Abstract:

This paper analyzes a MAC (Medium Access Control) layer throughput over error-prone channel in the IEEE 802.11ac-based wireless LAN with DCF (Distributed Coordination Function) protocol and A-MPDU (MAC Protocol Data Unit Aggregation) scheme, using theoretical analysis method. The MAC saturation throughput is evaluated by using a PER (Packet Error Rate) on the condition that the number of station, transmission probability, the number of parallel beams and the number of frames in each A-MPDU are variables. When the PER is 10-2 and the number of aggregated MPDUs in each A-MPDU is 20, it is identified that the MAC layer throughput of IEEE 802.11ac can be maximally attained up to a 92.8% of physical transmission rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

801-805

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IEEE 802. 11n, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: Enhancements for Higher Throughput, (2009).

DOI: 10.1109/ieeestd.2009.5307322

Google Scholar

[2] IEEE 802. 11ac, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, (2013).

DOI: 10.1109/ieeestd.2013.6687187

Google Scholar

[3] Giuseppe Bianchi, Performance Analysis of the IEEE 802. 11 Distributed Coordination Function, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 3, pp.535-547, March (2000).

DOI: 10.1109/49.840210

Google Scholar

[4] D. Skordoulis, Q. Ni, H. Chen A.P. Stephens, C. Liu and A. Jamalipour, IEEE 802. 11n MAC Frame Aggregation Mechanisms for Next-Generation High-Throughput WLANs, IEEE Wireless Communications, vol. 15, pp.40-47, Feb. (2008).

DOI: 10.1109/mwc.2008.4454703

Google Scholar

[5] Zuoyin Tang, Zongkai Yang, Jianhua He and Yanwei Liu, Impact of Bit Errors on the Performance of DCF for Wireless LAN, ICCCAS2002, pp.529-533, (2002).

DOI: 10.1109/icccas.2002.1180675

Google Scholar

[6] Ha Cheol Lee, A MAC Layer Throughput over Error-Free and Error-Prone Channel in The 802. 11a/g-based Mobile LAN, MICC 2009, Dec. (2009).

DOI: 10.1109/micc.2009.5431449

Google Scholar

[7] Ha Cheol Lee, A MAC Throughput over Rayleigh Fading Channel in The 802. 11a/g/n-based Mobile LAN, MESH 2011, Aug. (2011).

DOI: 10.1109/iceei.2011.6021527

Google Scholar

[8] Eng Hwee Ong, Jarkko Kneckt, Olli Alanen, Zheng Chang, Toni Huovinen and Timo Nihtila, IEEE 802. 11ac: Enhancements for Very High Throughput WLANs, PIMRC 2011, pp.849-853, (2011).

DOI: 10.1109/pimrc.2011.6140087

Google Scholar

[9] Ruizhi Liao, Boris Bellaita, Jaume Barcelo, Victor Valls and Miquel Oliver, Performance Analysis of IEEE 802. 11ac Wireless Backhaul Networks in Saturated Conditions, EURASIP Journal on Wireless Communications and Networking, Sep. (2013).

DOI: 10.1186/1687-1499-2013-226

Google Scholar

[10] Zheng Chang, Olli Alanen, Toni Huovinen, Timo Nihtila, Eng Hwee Ong, Jarkko Kneckt and Tapani Ristaniemi, Performance Analysis of IEEE 802. 11ac DCF with Hidden Nodes, VTCspring, (2012).

DOI: 10.1109/vetecs.2012.6240054

Google Scholar

[11] Boris Bellalta, Jaume Barcelo, Dirk Staehle, Alexey Vinel and Miquel Oliver, On the Performance of Packet Aggregation in IEEE 802. 11ac MU-MIMO WLANs, IEEE Communications Letters Vol. 16 Issue 10, pp.1588-1591, (2012).

DOI: 10.1109/lcomm.2012.081612.120744

Google Scholar

[12] Lochan Verma, Mohammad Fakharzadeh and Sunghyun Choi, WiFi on Steroids : 802. 11ac and 802. 11ad, IEEE Wireless Communications, pp.30-35, Dec. (2013).

DOI: 10.1109/mwc.2013.6704471

Google Scholar