Deformation Behavior of Mg-7Gd-5Y-1Nd-0.5Zr Alloy during Hot Compression

Article Preview

Abstract:

The hot deformation behavior of Mg-7Gd-5Y-1Nd-0.5Zr alloy was investigated by compression tests at temperatures of 673 K, 713 K, 753 K, and 793 K and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, and 1s-1. The stress-strain curves exhibit typical dynamic recrystallization behavior with a single peak stress followed by a gradual fall toward a steady-state stress. The apparent activation energy of deformation and constitutive equations for the alloy were determined through regression analysis for conventional hyperbolic sine equation. The apparent activation energy of DRX and dynamic kinetics model for alloy were determined using the regression analysis for Avrami equation. Optical microscope and electron backscattered diffraction were employed to investigate the microstructure evolution of Mg-7Gd-5Y-1Nd-0.5Zr alloy during hot compression. The results suggested that the grain boundary is the main nucleation sites of dynamic recrystallization, and (0001) basal fiber texture has formed during hot compression.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-115

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Agnew and J.F. Nie. Scripta Materialia, Vol. 63(2010), p.671.

Google Scholar

[2] Q. Ma, H. E. Kadiri, A.L. Oppedal, J.C. Baird, M.F. Horstemeyer, and M. Cherkaoui. Scripta Materialia, Vol. 64(2011), p.813.

DOI: 10.1016/j.scriptamat.2011.01.003

Google Scholar

[3] J.W. Yuan, K. Zhang, T. Li, X.G. Li, Y.J. Li, M.L. Ma, P. Li, G.Q. Luo, and Y.H. Hao. Material and Design, Vol. 40(2012), p.257.

Google Scholar

[4] B. Smola, I. Stulikova, F. Vonbuch, and B. L. Mordlike. Material Science and Engineering A, Vol. 324(2002), p.113.

Google Scholar

[5] G. W. Lorimer, P. J. Apps, H. Karimzadeh, and J. F. Nie. Materials Science Forum, Vol. 419(2003), p.279.

Google Scholar

[6] Y.J. LI. Study on the preparation, microstructures and mechanical properties of Mg-Y-RE-Zr alloys[D]. General Research Institute for Nonferrous Metals, Beijing: (2009).

Google Scholar

[7] Y.J. LI, K. Zhang, X.G. LI, M.L. Ma, H.Z. Wang, and L.Q. He. The Chinese Journal of Nonferrous Metals, Vol. 20(2010), p.1692.

Google Scholar

[8] A. Jain, O. Duygulu, D. W. Brown, C. N. Tomé, and S. R. Agnew. Material Science and Engineering A, Vol. 486, p.545.

Google Scholar

[9] M. R. and N. Stanford. Scripta Materialia, Vol. 57 (2007), p.1125.

Google Scholar

[10] D. R. Barraclough and C. M. Sellars. Metal Science, Vol. 13(1979), p.257.

Google Scholar

[11] S. I. Kim, Y. Lee, D. L. Lee, and Y. C. Yoo. Materials Science and Engineering A, Vol. 355 (2003), p.384.

Google Scholar

[12] S. I. Kim and Y. C. Yoo. Materials Science and Engineering A, Vol. 311 (2001), p.108.

Google Scholar

[13] J. Liu, Z. Cui, and L. Ruan. Materials Science and Engineering A, Vol. 529(2011), p.300.

Google Scholar

[14] G. Z. Quan, G. S. Li, T. Chen, Y. X. Wang, Y. W. Zhang, and J. Zhou. Materials Science and Engineering A, Vol. 528 (2011), p.4643.

Google Scholar

[15] C. X. Yue, L. W. Zhang, S. L. Liao, J.B. Pei, H. J. Gao, Y. W. Jia, X. J. Lian. Materials Science and Engineering A, Vol. 499(2009), p.177.

Google Scholar

[16] A.G. Beer and M. R Barnett. Scripta Materialia, Vol. 61 (2009), p.1097.

Google Scholar

[17] C. X. Yue, L. W. Zhang and S. L. Liao. Materials Science and Engineering A, Vol. 499(2009), p.177.

Google Scholar

[18] Z. Y. Zeng, L. Q. Chen, F. X. Zhu, and X. H. Liu. Journal of Materials and Technology, Vol. 27(2011), p.913.

Google Scholar