Enhanced H2 Sensing of SnO2 Nanowires Functionalized with Pt and Pd Catalyst Nanoparticles

Article Preview

Abstract:

SnO2 nanowires with a tetragonal structure were synthesized by thermal evaporation of tin grains at 900 °C. The obtained SnO2 nanowires were doped with Pt and Pd. The morphology, crystal structure, and H2 sensing properties of undoped, Pt-doped, and Pd-doped SnO2 nanowires were investigated. SnO2 nanowires were approximately 30–200 nm in diameter and several tens of micrometers in length. Gas sensors based on undoped, Pt-doped, and Pd-doped SnO2 nanowires showed a reversible response to H2 at an operating temperature of RT–300 °C. The response was improved in the order undoped < Pt-doped < Pd-doped SnO2 nanowire sensors under the same conditions. The highest response upon exposure to 1000 ppm H2 was 252.9 at 100 °C for Pd-doped SnO2 nanowire sensor. The results demonstrated that impurity doping improved the sensor response and lowered the operating temperature at which the sensor response was maximized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Korotcenkov and B.K. Cho: Sens. Actuators B Vol. 161 (2012), p.28.

Google Scholar

[2] D. Shin, T.M. Besmann and B.L. Armstrong: Sens. Actuators B Vol. 176 (2013), p.75.

Google Scholar

[3] Y.M. Lee and M.R. Zheng: Appl. Surf. Sci. Vol. 285 (2013), p.241.

Google Scholar

[4] P. Li, H.Q. Fan and Y. Cai: Sens. Actuators B Vol. 185 (2013), p.110.

Google Scholar

[5] D. Meng, T. Yamazaki and T. Kikuta: Sens. Actuators B Vol. 190 (2014), p.838.

Google Scholar

[6] Y.B. Shen, T. Yamazaki, Z.F. Liu, D. Meng and T. Kikuta: Thin Solid Films Vol. 517 (2009), p.6119.

Google Scholar

[7] G. Korotcenkov and B.K. Cho: Sens. Actuators B Vol. 142 (2009), p.321.

Google Scholar

[8] C. Nayral, T. Ould-Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzères and A. Peyre-Lavigne: Adv. Mater. Vol. 11 (1999), p.61.

DOI: 10.1002/(sici)1521-4095(199901)11:1<61::aid-adma61>3.0.co;2-u

Google Scholar

[9] D. Vaufrey, M.B. Khalifa, M.P. Besland, C. Sandu, M.G. Blanchin, V. Teodorescu, J.A. Roger and J. Tardy: Synth. Met. Vol. 127 (2002), p.207.

DOI: 10.1016/s0379-6779(01)00624-5

Google Scholar

[10] Y. Shimizu, A. Jono, T. Hyodo and M. Egashira: Sens. Actuators B Vol. 108 (2005), p.56.

Google Scholar

[11] J.C. Chou and Y.F. Wang: Sens. Actuators B Vol. 86 (2002), p.58.

Google Scholar

[12] W.P. Tai and K. Inoue: Mater. Lett. Vol. 57 (2003), p.1508.

Google Scholar

[13] T. Yamazaki, H. Okumura, C.J. Jin, A. Nakayama, T. Kikuta and N. Nakatani: Vaccum Vol. 77 (2005), p.237.

Google Scholar

[14] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang and S.S. Xie: Solid State Commun. Vol. 130 (2004), p.89.

DOI: 10.1016/j.ssc.2004.01.003

Google Scholar

[15] Y.Q. Chen, X.F. Cui, K. Zhang, D.Y. Pan, S.Y. Zhang, B. Wang and J.G. Hou: Chem. Phys. Lett. Vol. 369 (2003), p.16.

Google Scholar

[16] N. Yamazoe, Y. Kurokawa and T. Seiyama: Sens. Actuators B Vol. 4 (1983), p.283.

Google Scholar

[17] S. Matsushima, Y. Teraoka, N. Miura and N. Yamazoe: Jpn. J. Appl. Phys. Vol. 27 (1988), p.1798.

Google Scholar

[18] R. Dolbec and M.A. El Khakani, Appl. Phys. Lett. Vol. 90 (2007), p.173114.

Google Scholar