[1]
Bar-Cohen Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges. Bellingham, WA, USA: SPIE, (2004).
DOI: 10.1117/3.547465
Google Scholar
[2]
Carpi F., Tralli A., Danilo D. R. and Paolo G.: IEEE Transactions on Aerospace and Electronic Systems, 2007, 43: 79-92.
Google Scholar
[3]
Dubowsky S., Lagnemma K., Liberatore S., Lambeth D. M., Plante J.S. and Boston P.J., A concept mission: microbots for large-scale planetary surface and subsurface exploration, AIP Conference Proceedings, 2006, 1449-59.
DOI: 10.1063/1.1867276
Google Scholar
[4]
Goulbourne N. C., Frecker M. I., Mockensturm E. M. and Snyder A., Modeling of a dielectric elastomer diaphragm for a prosthetic blood pump, Symposium on Smart Structures and Materials: Electroactive Polymer Actuators and Devices, San Diego, 2004, 122-133.
DOI: 10.1117/12.539818
Google Scholar
[5]
McKay T., O'Brien B., Calius E. and Anderson I.: Smart Mater. Struct. 19 (2010) 055025 (7pp).
Google Scholar
[6]
Jhong Y. Y., Huang C. M., Hsieh C. C. and Fu C. C., Improvement of viscoelastic effects of dielectric elastomer actuator and its application for valve devices, Proceedings of SPIE EAPAD, SPIE, 2007, pp.1-9.
DOI: 10.1117/12.715998
Google Scholar
[7]
Bonwit N., Heim J., Rosenthal M., et al.: Design of commercial applications of EPAM technology, Symposium on Smart Structures and Materials: Electroactive Polymer Actuators and Devices, San Diego, 2006: 616805: 1-10.
DOI: 10.1117/12.658775
Google Scholar
[8]
Plante J., Devita L. M. and Dubowsky S., A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation, Symposium on Smart Structures and Materials: Electroactive Polymer Actuators and Devices, San Diego CA, 2007, 652406: 1-15.
DOI: 10.1117/12.715236
Google Scholar
[9]
Goulbourne N. C., Mockensturm E. M., Frecker M. I.: International Journal of Solids and Structures, 2007, 44: 2609-2626.
DOI: 10.1016/j.ijsolstr.2006.08.015
Google Scholar
[10]
Toupin R. A.: Journal of Rational Mechanics and Analysis, 1956, 5: 850–915.
Google Scholar
[11]
Suo Z. G., Zhao X. H., Greene W. H.: Journal of the Mechanics and Physics of Solids, 2008, 56: 467–486.
Google Scholar
[12]
Tezduyar T. E., Wheeler L. T., and Graux L., Finite deformation of a circular elastic membrane containing a concentric rigid inclusion, International Journal of Non-Linear Mechanics, 1987, 22: 61-72.
DOI: 10.1016/0020-7462(87)90049-7
Google Scholar
[13]
He T. H., Zhao X. H. and Suo Z. G., Dielectric elastomer membranes undergoing inhomogeneous deformation, Journal of Applied Physics, 2009, 8: 083522-0835229.
DOI: 10.1063/1.3253322
Google Scholar
[14]
Yeoh O.H., Characterization of elastic properties of carbon-black filled rubber vulcanizates, Rubber Chem. Technol. 1990, 63: 792–805.
DOI: 10.5254/1.3538289
Google Scholar
[15]
Fung Y. C., Biomechanics. Mechanical properties of living tissues, 2nd edn. Springer-Verlag, New York, 1993, 277-278.
Google Scholar
[16]
Wissler M., Mazza E. and Kovacs G., Circular pre-strained dielectric elastomer actuator: modeling, simulation and experimental verification, Proceedings of SPIE, 2005, 5759: 182-193, (2005).
DOI: 10.1117/12.598719
Google Scholar