Research Progress of the Polyurethane-nTiO2 Self-Cleaning Coating

Article Preview

Abstract:

Self-cleaning coatings are getting tremendous attention from both the academic interest and industrial communities. Among the two kinks of self-cleaning coatings, which are super-hydrophobic and super-hydrophilic coatings, the super-hydrophilic self-cleaning coating comprised of TiO2/doped-TiO2 has four unique features when exposed to ultraviolet (UV) light or sunlight, which are self-cleaning property, anti-bacterial properties, environmental friendly, and visible-light photocatalysts and indoor usage. And PU-TiO2 self-cleaning coating produced by “grafting” method, which can accomplish stable chemical attachment between the nTiO2 and the PU substrates, may potentially show an increase of the thermal properties, an increase of the amount of active sites for photo-catalysis, and a decrease in the self-degradation of the resulting polymer nanocomposite than the traditional mechanical shear method. There is a tremendous scope for the application of polyurethane-nTiO2 self-cleaning coatings in industrial, health care and consumer sectors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-265

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rios, P. F.; Dodiuk, H.; Kenig, S., Self-cleaning coatings. Surface Engineering 2009, 25 (2), 89-92.

DOI: 10.1179/174329409x373710

Google Scholar

[2] Wulf, M.; Wehling, A.; Reis, O., Coatings with self-cleaning properties. Macromol. Symp. 2002, 187, 459-467.

Google Scholar

[3] Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-+.

DOI: 10.1038/238037a0

Google Scholar

[4] Fujishima, A.; Zhang, X. T., Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 2006, 9 (5-6), 750-760.

DOI: 10.1016/j.crci.2005.02.055

Google Scholar

[5] Rios, P. F.; Dodiuk, H.; Kenig, S., et al., Durable ultra-hydrophobic surfaces for self-cleaning applications. Polymers for Advanced Technologies 2008, 19 (11), 1684-1691.

DOI: 10.1002/pat.1208

Google Scholar

[6] Parkin, I. P.; Palgrave, R. G., Self-cleaning coatings. J. Mater. Chem. 2005, 15 (17), 1689-1695.

Google Scholar

[7] Matsunaga, T.; Tomoda, R.; Nakajima, T., et al., Photoelectrochemical sterilization of microbial-cells by semiconductor powders. Fems Microbiology Letters 1985, 29 (1-2), 211-214.

DOI: 10.1111/j.1574-6968.1985.tb00864.x

Google Scholar

[8] Sunada, K.; Kikuchi, Y.; Hashimoto, K., et al., Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol. 1998, 32 (5), 726-728.

DOI: 10.1021/es970860o

Google Scholar

[9] Kikuchi, Y.; Sunada, K.; Iyoda, T., et al., Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology a-Chemistry 1997, 106 (1-3), 51-56.

DOI: 10.1016/s1010-6030(97)00038-5

Google Scholar

[10] Tsuang, Y. H.; Sun, J. S.; Huang, Y. C., et al., Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artificial Organs 2008, 32 (2), 167-174.

DOI: 10.1111/j.1525-1594.2007.00530.x

Google Scholar

[11] Sunada, K.; Watanabe, T.; Hashimoto, K., Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology a-Chemistry 2003, 156 (1-3), 227-233.

DOI: 10.1016/s1010-6030(02)00434-3

Google Scholar

[12] Fu, G. F.; Vary, P. S.; Lin, C. T., Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005, 109 (18), 8889-8898.

DOI: 10.1021/jp0502196

Google Scholar

[13] Bahnemann, D.; Cassano, A., Special issue on TiO2 photocatalytic purification and treatment of water and air - Preface. Journal of Advanced Oxidation Technologies 2002, 5 (1), 3-3.

Google Scholar

[14] Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[15] Watanabe, T.; Nakajima, A.; Wang, R., et al., Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 1999, 351 (1-2), 260-263.

DOI: 10.1016/s0040-6090(99)00205-9

Google Scholar

[16] Minabe, T.; Tryk, D. A.; Sawunyama, P., et al., TiO2-mediated photodegradation of liquid and solid organic compounds. Journal of Photochemistry and Photobiology a-Chemistry 2000, 137 (1), 53-62.

DOI: 10.1016/s1010-6030(00)00350-6

Google Scholar

[17] Asahi, R.; Morikawa, T.; Ohwaki, T., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science (Washington, DC, United States) 2001, 293 (5528), 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[18] Dunnill, C. W.; Aiken, Z. A.; Pratten, J., et al., N-doped titania thin films, prepared by atmospheric pressure chemical vapour deposition: enhanced visible light photocatalytic activity and anti-microbial effects. ECS Transactions 2009, 25 (8, EuroCVD 17/CVD 17), 65-72.

DOI: 10.1149/1.3207576

Google Scholar

[19] Bayer, O., The diisocyanate polyaddition process (polyurethanes). Description of a new principle for building up high-molecular compounds. Angew Chem 1947, A59: 257.

Google Scholar

[20] Kasanen, J.; Suvanto, M.; Pakkanen, T. T., Self-Cleaning, Titanium Dioxide Based, Multilayer Coating Fabricated on Polymer and Glass Surfaces. Journal of Applied Polymer Science 2009, 111 (5), 2597-2606.

DOI: 10.1002/app.29295

Google Scholar

[21] Lee, C. S.; Kim, J.; Son, J. Y., et al., Photocatalytic functional coatings of TiO2 thin films on polymer substrate by plasma enhanced atomic layer deposition. Appl. Catal. B-Environ. 2009, 91 (3-4), 628-633.

DOI: 10.1016/j.apcatb.2009.06.037

Google Scholar

[22] Chen, Y.; Yan, L. D.; Yuan, T., et al., Asymmetric Polyurethane Membrane with In Situ-Generated Nano-TiO2 as Wound Dressing. Journal of Applied Polymer Science 2011, 119 (3), 1532-1541.

DOI: 10.1002/app.32813

Google Scholar

[23] Chen, Y.; Wang, R.; Zhou, J. A., et al., Membrane formation temperature-dependent gas transport through thermo-sensitive polyurethane containing in situ-generated TiO2 nanoparticles. Polymer 2011, 52 (8), 1856-1867.

DOI: 10.1016/j.polymer.2011.02.021

Google Scholar

[24] Chen, J.; Zhou, Y. M.; Nan, Q. L., et al., Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites. Appl. Surf. Sci. 2007, 253 (23), 9154-9158.

DOI: 10.1016/j.apsusc.2007.05.046

Google Scholar

[25] Burgess, K. D. Self-Cleaning Titania-Polyurethane Composites The University of Western Ontario London, ON., (2007).

Google Scholar