Hydrothermal Synthesis, Photoluminescence and Room Temperature Ferromagnetism of Co-Doped Rod-Like ZnO Particles

Article Preview

Abstract:

Co-doped rod-like ZnO particles with nominal Co doping concentration of 1 at% were synthesized by hydrothermal method and characterized by X-ray diffraction, field-emission scanning electron microscopy, photoluminescence and superconducting quantum interference device. The results show that the as-synthesized samples are pure hexagonal wurtzite structure without metallic Co or other secondary phases and display rod-like shape with smooth surface. The room temperature PL spectrum of the Co-doped rod-like ZnO particles exhibits a strong blue emission at 440 nm, a shoulder violet emission at 410 nm and a weak green emission centered at 550 nm. The magnetization measurements reveal that the Co-doped rod-like ZnO particles show ferromagnetic behavior at room temperature. The saturation magnetization and coercive field are 0.0125 emu/g and 45 Oe, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

292-295

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Webber, R. Russo and P. Yang: Science Vol. 292 (2001) p.1897.

Google Scholar

[2] S.A. Wolf, D.D. Awschalom, R. A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger: Science Vol. 294 (2001) p.1488.

DOI: 10.1126/science.1065389

Google Scholar

[3] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: Science Vol. 287 (2000) p.1019.

Google Scholar

[4] K. Sato and H.K. Yoshida: Jpn. J. Appl. Phys. Vol. 39 (2000) p. L555.

Google Scholar

[5] H.J. Lee, S.Y. Jeong, C.R. Cho and C.H. Park: Appl. Phys. Lett. Vol. 81 (2002) p.4020.

Google Scholar

[6] C.W. Cheng, G.Y. Xu, H.Q. Zhang, Y. L and Y.Y. Li: Mater. Lett. 62 (2008) p.3733.

Google Scholar

[7] S.Y. Gao, H.D. Li, J.J. Yuan, Y.A. Li, X.X. Yang and J.W. Liu: Appl. Surf. Sci. Vol. 256 (2010) p.2781.

Google Scholar

[8] Y.B. Li, Y. Li, M.Y. Zhu, T. Yang, J. Huang, H.M. Jin and Y.M. Hu: Solid State Commun. Vol. 150 (2010) p.751.

Google Scholar

[9] L.Z. Pei, H.S. Zhao, W. Tan, H.Y. Yu, Y.W. Chen, C.G. Fan and Q.F. Zhang: Physica E Vol. 42 (2010) p.1333.

Google Scholar

[10] D.W. Chu, Y.P. Zeng and D.L. Jiang: Mater. Lett. Vol. 60 (2006) p.2783.

Google Scholar

[11] H.M. Hu, X.H. Huang, C.H. Deng, X.Y. Chen and Y.T. Qian: Mater. Chem. Phys. Vol. 106 (2007) p.58.

Google Scholar

[12] M.A. Ruderman and C. Kittel: Phys. Rev. Vol. 96 (1954) p.99.

Google Scholar

[13] K. Yosida: Phys. Rev. Vol. 106 (1957) p.893.

Google Scholar