Synthesis and Electrochemical Performance of K-Doped Li4Ti5O12 as Anode Material for Lithium-Ion Batteries

Article Preview

Abstract:

Spinel Li4-xKxTi5O12 (x=0, 0.03) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li3.97K0.03Ti5O12 exhibited much better rate performance in comparsion with Li4Ti5O12. At 0.2 C and 10 C, it delivered a discharge capacity of 173 mAh g-1 and 124 mAh g-1 respectively, and after 100 cycles at 10 C, 96.1% of its initial capacity was retained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

495-498

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mahmoud, J. M. Amarilla, K. Lasri, I. Saadoune, Electrochim. Acta. 93 (2013) 163- 172.

Google Scholar

[2] C. M. Zhang, Y. Y. Zhang, J. Wang, D. Wang, D. N. He, Y. Y. Xia, J. Power Sources 236 (2013) 118-125.

Google Scholar

[3] C. Jamin, K. Traina, D. Eskenazi, N. Krins, R. Cloots, B. Vertruyen, F. Boschini, Mate. Res. Bull. 48 (2013) 4641- 4646.

DOI: 10.1016/j.materresbull.2013.07.035

Google Scholar

[4] W. Fang, X. Q. Cheng, P. J. Zuo, Y. L. Ma, G. P. Yin, Electrochim. Acta 93 (2013) 173-178.

Google Scholar

[5] H. J. Luo, L. F. Shen, K. Rui, H. S. Li, Q. X. G. Zhang, J. Alloys Compd. 572 (2013) 37-42.

Google Scholar

[6] X. R. Li, H. Hu, S. Huang, G. G. Yu, L. Gao, H. W. Liu, Y. Yu, Electrochim. Acta 112 (2013) 356-363.

Google Scholar

[7] H. F. Ni, L. Z. Fan, J. Power Sources 214 (2012) 195-199.

Google Scholar

[8] W. Wang, Y. Y. Guo, L. X. Liu, S. X. Wang, X. J. Yang, H. Guo, J. Power Sources 245 (2014) 624-629.

Google Scholar

[9] M. Krajewski, M. Michalska, B. Hamankiewicz, D. Ziolkowska, K. P. Korona, J. B. Jasinski, M. Kaminska, L. Lipinska, A. Czerwinski, J. Power Sources 245 (2014) 764-771.

DOI: 10.1016/j.jpowsour.2013.07.048

Google Scholar

[10] Z. J. He, Z. X. Wang, L. Cheng, T. Li, X. h. Li, H. J. Guo, F. X. Wu, Mater. Lett. 107(2013)273–275.

Google Scholar

[11] X. B. Hu, Z. J. Lin, K. R. Yang, Y. J. Huai, Z. H. Deng, Electrochim. Acta 56 (2011) 5046–5053.

Google Scholar

[12] T. F. Yi, S. Y. Yang, X. Y. Li, J. H. Yao, Y. R. Zhu, R. S. Zhu, J. Power Sources 246 (2014) 505-511.

Google Scholar

[13] Ch. F. Lin, M. O. Lai, L. Lu, H. H. Zhou, Y. L. Xin, J. of Power Sources 244 (2013) 272-279.

Google Scholar

[14] Z. W. Zhang, L. Y. Cao, J. F. Huang, S. Zhou, Y. C. Huang, Y. J. Cai, Ceram. Int. 39 (2013) 6139–6143.

Google Scholar

[15] J. Y. Lin, C. C. Hsu, H. P. Ho, S. H. Wu, Electrochim. Acta 87 (2013) 126– 132.

Google Scholar

[16] Q. Y. Zhang, C. L. Zhang, B. Li, D. D. Jiang, S. F. Kang, X. Li, Y. G. Wang, Electrochim. Acta 107 (2013) 139– 146.

Google Scholar

[17] H. B. Wu, S. Chang, X. L. Liu, L. Q. Yu, G. L. Wang, D. X. Cao, Y. M. Zhang,B. F. Yang, P. L. She, Solid State Ionics 232 (2013) 13-18.

DOI: 10.1016/j.ssi.2012.10.027

Google Scholar

[18] Y. M. Chiang, S. Y. Chung, J. T. Bloking, A. M. Anderron, U. S. Patent US 2004/0005265 A1(2004).

Google Scholar

[19] Y. H. Nien, J. R. Carey, J. S. Chen, J. Power Sources 193 (2009) 822-827.

Google Scholar

[20] H. Ning, C. Y. Wang, X. Y. Kang, T. Wumair, Y. Han, J. Alloys Compd. 503 (2010) 204-208.

Google Scholar