Effect of Assets of Silicon Film Passivation Layer on the Performance of Silicon Nanowire Solar Cells

Article Preview

Abstract:

Silicon film as a surface passivation layer is reported to reduce surface recombination on silicon nanowires (SiNWs) and thus enable to improve SiNW solar cell (SC) performance. A question yet to be answered regards the link between the silicon film assets and the solar cell performances. We investigated the effect of the properties of silicon films on the SiNWs SC performances by adjusting hydrogen dilution. Our results showed that the open-circuit voltage (Voc) and short-circuit current density (Jsc) of SiNWs SC increase until hydrogen dilution 10 and then decrease. An open-circuit voltage of 0.397 V and short-circuit current density of 18.42 mA/cm2 are achieved at optimized hydrogen dilution. Based on the analysis of silicon film properties we proposed that the increase of defect density with hydrogen dilution was the main cause for the deterioration of SiNWs SC performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

509-512

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Peng KQ, Lee ST Adv Mater Vol. 23(2011), p.198.

Google Scholar

[2] Tian BZ, Zheng XL, Kempa TJ, Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM. Nature Vol. 449(2007), p.885.

Google Scholar

[3] Xiaobing Xie, Xiangbo Zeng, Ping Yang, Hao Li, Xiaodong Zhang, Wang Q. Nanoscale Research Letters Vol 7( 2012), P. 1.

Google Scholar

[4] Hu L, Chen G: Nano Letters Vol 7 (2007), p.3249.

Google Scholar

[5] Kayes BM, Atwater, H. A., Lewis, N. S J Appl Phys 2005, 97: 114302.

Google Scholar

[6] Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA:. Nat Mater 2010, 9: 239.

DOI: 10.1038/nmat2635

Google Scholar

[7] M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, Atwater HAEnergy Environ Sci 2011, 4: 866.

DOI: 10.1039/c0ee00549e

Google Scholar

[8] Li JS, Yu HY, Wong SM, Zhang G, Sun XW, Lo PGQ, Kwong DL: Appl Phys Lett 2009, 95: 033102.

Google Scholar

[9] Ping Yang, Xiangbo Zeng, Xiaobing Xie, Xiaodong Zhang, Hao Li, Zhanguo Wang,. RSC Advances 2013, 3: 24917.

Google Scholar

[10] Subhendu Guha, Jeffrey Yang, Arindam Banerjee, Baojie Yan, Lord K:. Sol Energy Mater Sol Cells 2003, 78: 329.

Google Scholar

[11] Qi Wang, Guozhen Yue, Jing Li, Han D, Blanpain B:. Solid State Communications 2000, 113: 175.

Google Scholar

[12] A. Luque SH (Ed. ). Handbook of Photovoltaic Science and Engineering. Chichester: John Wiley & Sons; (2003).

Google Scholar

[13] N. Wyrsch, F. Finger, T.J. McMahon, Vanecek M:. Journal of Non-Crystalline Solids 1991, 137-138: 347.

DOI: 10.1016/s0022-3093(05)80127-9

Google Scholar

[14] A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vanek, J. Koka, J. Meier, P. Torres, Shah A:. J Appl Phys 2000, 88: 148.

Google Scholar

[15] Stefan Klein, Friedhelm Finger, Reinhard Carius, Thorsten Dylla, Klomfass J:. J Appl Phys Vol. 102 (2007), p.103501.

Google Scholar