Low-Shrinkage Alcohol Cement Concrete

Article Preview

Abstract:

The article deals with the results from the analysis of the materials properties based on portland cement, polyalcohol and iron-bearing mineral assemblage. These materials are proved to possess higher compressive strength and lower shrinkage properties first and foremost, and besides they secure appropriate structural properties under a design project as well. On the grounds of the tests carried out it has been suggested to use the mix design of glycerin with portland cement and iron-bearing mineral assemblage with the purpose to obtain the material having the high compressive strength and most nearly lacking the shrinkage properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

917-921

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.G. Lee, Y.C. Wang, C.T. Chiu: A preliminary study of reactive powder concrete as a new repair material, Constr. Build. Mater., Vol. 21 No l (2007) pp.182-189.

Google Scholar

[2] C.I. Liu, J-S. Huang: Highly flowable reactive powder mortar as a repair material, Constr. Build. Mater., Vol. 22 No 6 (2008) pp.1043-1050.

DOI: 10.1016/j.conbuildmat.2007.03.009

Google Scholar

[3] М. Collepardi, O.J.J. Ogoumah, R. Troli: Combination of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concretes, The VII AIMAT Congress, 2004: Proc. - Ancona (Italy), (2004) pp.1-7.

DOI: 10.14359/13273

Google Scholar

[4] M. Collepardi, M. Corradi, M. Valente: Influence of polymerization of sulfonated naphtalene condensate and its interaction with cement, The 2-nd International Conf. on Superplasticizers in Concrete, Canada Centre for Mineral and Energy Technology and American Concrete Institute, Ottawa (1981).

Google Scholar

[5] M. Collepardi, М. Valente: Recent Developments in Superplasticizers, The 8-th International Conf. on Superplasticizers and Other Chemical Admixtures in Concrete (2006), pp.1-14.

DOI: 10.14359/18367

Google Scholar

[6] R.J. Flatt, N.S. Martys, L. Bergstrom: The rheology of cementitious materials, MRS Bulletin Vol. 29 No 5 (2004), pp.314-318.

DOI: 10.1557/mrs2004.96

Google Scholar

[7] S. Hanehara, K. Yamada: Rheology and early age properties of cement systems, Cem. Concr. Res. Vol. 38 No 1 (2008), pp.175-195.

DOI: 10.1016/j.cemconres.2007.09.006

Google Scholar

[8] Yu.G. Barabanshchikov, K.V. Semenov: Increasing the plasticity of concrete mixes in hydrotechnical construction, Power Technology and Engineering Vol. 41 (4) (2007), pp.197-200.

DOI: 10.1007/s10749-007-0038-8

Google Scholar

[9] S.A. Mironov, A.A. Pariiskii, Yu.G. Barabanshchikov: Change in the phase composition of water and kinetics of heat generation of concrete hardening at a negative temperature, Hydrotechnical Construction, Vol. 15 (4) (1981), pp.223-231.

DOI: 10.1007/bf01429063

Google Scholar

[10] M.V. Chernov, T.M. Yegupova, N.M. Dolganin: Dobavka v betonnuyu smes [Concrete additive], patent RUS 2185347 07. 07. (2000).

Google Scholar

[11] M.V. Chernov, T.M. Yegupova, V.I. Kulish: Dobavka v betonnuyu smes [Concrete additive], patent RUS 2167117 06. 05. (2000).

Google Scholar

[12] A.A. Shishkin: Alkaline reaction powder concretes, Construction of Unique Buildings and Structures, Vol. 2 (17) (2014), pp.56-65.

Google Scholar

[13] I. Pundiene, V. Mironovs, A. Korjakins, E. Spudulis: Investigation of hydration features of the special concrete with aggregates of various metal particles, Key Engineering Materials, Vol. 604 (2014), pp.297-300.

DOI: 10.4028/www.scientific.net/kem.604.297

Google Scholar

[14] P. Kara, A. Korjakins: High efficiency ecological concrete Key Engineering Materials, Vol. 604 (2014), pp.157-160.

DOI: 10.4028/www.scientific.net/kem.604.157

Google Scholar

[15] N. Toropovs, D. Bajare, G. Sahmenko, L., Krage, A. Korjakins: The formation of microstructure in high strength concrete containing micro and nanosilica, Key Engineering Materials, Vol. 604 (2014), pp.83-86.

DOI: 10.4028/www.scientific.net/kem.604.83

Google Scholar

[16] G. Sahmenko, N. Toropovs, M. Sutinis, J. Justs: Properties of high performance concrete containing waste glass micro-filler, Key Engineering Materials, Vol. 604 (2014), pp.161-164.

DOI: 10.4028/www.scientific.net/kem.604.161

Google Scholar

[17] G. Shakhmenko, I. Juhnevica, A. Korjakins: Influence of sol-gel nanosilica on hardening processes and physically-mechanical properties of cement paste, Procedia Engineering, Vol. 57 (2013), pp.1013-1021.

DOI: 10.1016/j.proeng.2013.04.128

Google Scholar

[18] D. Nagrockiene, G. Girskas, G. Skripkiunas: Cement freezing-thawing resistance of hardened cement paste with synthetic zeolite, Construction and Building Materials, Vol. 66 (2014), pp.45-52.

DOI: 10.1016/j.conbuildmat.2014.05.025

Google Scholar

[19] I. Pundiene, V. Mironovs, A. Korjakins, E. Spudulis: Investigation of hydration features of the special concrete with aggregates of various metal particles, Key Engineering Materials, 604 (2014), pp.297-300.

DOI: 10.4028/www.scientific.net/kem.604.297

Google Scholar

[20] I. Pundiene, M. Kligys, J. Šeputyte-Jucike: Portland cement based lightweight multifunctional matrix with different kind of additives containing SiO2, Key Engineering Materials, Vol. 604, (2014), pp.305-308.

DOI: 10.4028/www.scientific.net/kem.604.305

Google Scholar

[21] R. Stonis, I. Pundiene, V. Antonoviè, M. Kligis, E. Spudulis: Study of the effect of replacing microsilica in heat-resistant concrete with additive based on metakaolin, Refractories and Industrial Ceramics, Vol. 54 (3) (2013), pp.232-237.

DOI: 10.1007/s11148-013-9580-0

Google Scholar

[22] A. Sprince, G. Fischer, L. Pakrastinsh, A. Korjakins: Crack propagation in concrete with silica particles, Advanced Materials Research, Vol. 842 (2014), pp.470-476.

DOI: 10.4028/www.scientific.net/amr.842.470

Google Scholar

[23] A. Cwirzen, V. Penttala, C. Vornanen: Reactive powder concretes: Mechanical properties, durability and hybrid use with OPC, Cem. Concr. Res. Vol. 38, No 10 (2008), pp.1217-1226.

DOI: 10.1016/j.cemconres.2008.03.013

Google Scholar

[24] S.K. Gilliland: Reactive powder concrete (RFC), a new material for prestressed concrete bridge girders, Building an International Community of Structural Engineers Structures Congress, Proc. New York (USA), ASCE, Vol. 1. (1996), pp.125-132.

Google Scholar

[25] E.F. O'Neil, W.M. Dowd: Reactive Powder Concrete: A New Material for the Construction Industry, The Third National Concrete and Masonry Engineering Conf, S.K. Ghosh, ed., National Concrete and Masonry Engineering Conference (1995), pp.43-50.

Google Scholar

[26] Р. Termkhajornkit, Т. Nawa, М. Nakai, Т. Saito: Effect of fly ash on autogenous shrinkage Cem. Concr. Res. Vol. 35 No 3 (2005), pp.473-482.

DOI: 10.1016/j.cemconres.2004.07.010

Google Scholar

[27] A.A. Pashchenko, V.P. Serbin, Ye.A. Starchevskaya: Vyazhushchiye materialy, Moskow Vyssh. shk., (1975), 444 p.

Google Scholar

[28] A.F. Mashtakov, V.F. Chernykh, A. Yu. Shchibrya, Ye.V. Lobanova: Kompleksnaya dobavka dlya betonov i rastvorov [Complex concrete additive]. Patent RU 2168478 2001. 06. 10.

Google Scholar

[29] L.K. Zharikov, K. G. Mashchenko: Kompleksnaya dobavka dlya betonov i rastvorov [Complex concrete additive]. Patent RU 2278836 2010. 01. 10.

Google Scholar

[30] A. I. Artemenko: Organicheskaya khimiya, Moskow, Vysshaya shkola, (1987), 430 p.

Google Scholar

[31] C.F. Ferraris, K.H. Obla, R. Hill: The influence of mineral admixtures on the rheology of cement paste and concrete, Cem. Concr. Res., Vol. 31 No 2 (2001), pp.245-255.

DOI: 10.1016/s0008-8846(00)00454-3

Google Scholar

[32] M. Nehdi: Why some carbonate fillers cause rapid increases of viscosity in dispersed cement-based materials, Cem. Concr. Res., Vol. 30 No 10 (2000), pp.1663-1669.

DOI: 10.1016/s0008-8846(00)00353-7

Google Scholar

[33] Т.К. Erdem, О. Kirca: Use of binary and ternary blends in high strength concrete, Constr. Build. Mater., Vol. 22 No 7 (2008), pp.1477-1483.

Google Scholar

[34] A.J. Maas, J.H. Ideker, M.C.G. Juenger: Alkali silica reactivity of agglomerated silica fume, Cem. Concr. Res., Vol. 37 No 2 (2007), pp.166-174.

DOI: 10.1016/j.cemconres.2006.10.011

Google Scholar

[35] G. Grinfeld, A. Gorshkov, N. Vatin: Tests results strength and thermophysical properties of aerated concrete block wall samples with the use of polyurethane adhesive, Advanced Materials Research, Vol. 941-944 (2014), pp.786-799.

DOI: 10.4028/www.scientific.net/amr.941-944.786

Google Scholar

[36] M. Sinica, G.A. Sezeman, D. Mikulskis, M. Kligys, V. Cesnauskas: Impact of complex additive consisting of continuous basalt fibres and SiO2 microdust on strength and heat resistance properties of autoclaved aerated concrete, Construction and Building Materials, Vol. 50 (2014).

DOI: 10.1016/j.conbuildmat.2013.10.027

Google Scholar

[37] A.A. Shishkin: Spetsialnyye betony dlya usileniya stroitelnykh konstruktsiy ekspluatiruyushchikhsya v usloviyakh deystviya agressivnykh sred, PhD thesis 05. 23. 05, Krivoy Rog, (2003), 336 p.

Google Scholar