[1]
Ding, Y., Ceglarek D. and Shi, J. Fault diagnosis of multi-station manufacturing processes by using state space approach [J], ASME Journal of Manufacturing Science and Engineering, 2002, 124 (2): 313-322.
DOI: 10.1115/1.1445155
Google Scholar
[2]
CEGLAREK D, SHI J. Dimensional variation reduction for automotive body assembly[J]. Journal of Mancufacturing Revi- iew, 1995, 8: 139-154.
Google Scholar
[3]
CEGLAREK D, SHI J, WU S M. A knowledge-based diagnosis approach for the launch of the auto-body assembly process[J]. ASME Journal of Engineering for Industry, 1994, 116: 491-499.
DOI: 10.1115/1.2902133
Google Scholar
[4]
Apley, D. W. and Shi J. Diagnosis of multiple fixture faults in panel assembly [J], ASME Journal of Manufacturing Science and Engineering, 1998, 120 (4): 793-801.
DOI: 10.1115/1.2830222
Google Scholar
[5]
Hu, S. J., Wu, S. W. Identifying root cause of variation in automobile body assembly using principal component analysis [J], Transactions of NAMRI, 1992, 20: 311-316.
Google Scholar
[6]
Liu, Y. and Hu, S.J. Assembly fixture fault diagnosis using designated component analysis [J]. Journal of Manufacturing Science and Engineering, 2005, 127(2): 358-368.
DOI: 10.1115/1.1852572
Google Scholar
[7]
Jin, J., and Shi, J., 1999, 'State Space Modeling of Sheet Metal Assembly for Dimensional Control, ', ASME J. Manuf. Sci. Eng., 121, p.756 –762.
DOI: 10.1115/1.2833137
Google Scholar
[8]
Ding Y., Shi J., Ceglarek D., Diagnosabili- ty analysis of multi-station manufacturing processes, ASME Journal of Manufacturing Science and Engineering, 2002, 124 (1): 1-13.
DOI: 10.1115/imece2002-32343
Google Scholar
[9]
Rao, Kleffe, Estimation of variance com- ponents and applications, Amsterdam: North- Holland, (1998).
Google Scholar