Risk Assessment for a Main Pipeline under Severe Soil Conditions on Exposure to Seismic Forces

Article Preview

Abstract:

Main Pipelines of the Russian Federation are critical energy facilities that make a significant contribution to the operation of power industry as a whole. Earthquakes are almost always followed by an increase in the accident rate on pipelines. Therefore, there is a reason to suppose that seismic forces (even minor ones) accelerate failure occurrence in a number of pipeline sections and serve as “the last straw” that causes accidents. The pipelines incur the most severe damage when the route is co directional to the seismic strain vector.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

468-471

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] SNiP 2. 05. 06-85 Main Pipelines. Moscow: TsITP of the USSR Gosstroy. 1985. p.52.

Google Scholar

[2] P.P. Borodavkin. Soil Mechanics in Pipeline Construction. Moscow: Nedra, 1986. p.224.

Google Scholar

[3] Reliability Reference Guide. Vol. 2 under the editorship of B.E. Berdichevsky. Moscow: Nauka. (1970).

Google Scholar

[4] V.V. Lalin, A.V. Iavarov: Raschetnoe obosnovanie konstruktcii nadzemnogo uchastka gazoprovoda v usloviiakh Krainego Severa, Izvestiia VNIIG, 257 (2010) pp.112-115.

Google Scholar

[5] V.V. Lalin, A.V. Iavarov: Modern calculation methods of trunk pipelines, Magazine of Civil Engineering, 3 (2010) pp.43-47.

Google Scholar

[6] A.V. Iavarov, V.V. Lalin: K voprosu postroeniia konechno-elementnoi obolochechnoi modeli podzemnoi prokladki magistralnogo truboprovoda, Problemy prochnosti materialov i sooruzhenii na transporte, PGUPS, St. Petersburg (2011) p.106.

Google Scholar

[7] A.V. Iavarov, V.V. Lalin: Tekhnologiia postroeniia obemnykh konechno-elementnykh modelei podzemnykh magistralnykh truboprovodov, Nauka i innovatcii v tekhnicheskikh universitetakh. SPbGPU, St. Petersburg (2011) p.35.

Google Scholar

[8] A.V. Iavarov: Chislennoe modelirovanie soprotivleniia massiva grunta peremeshcheniiam podzemnogo truboprovoda, Neftegazovoe delo 3 (2012) pp.360-374. URL: http: /www. ogbus. ru/authors/Yavarov/Yavarov_1. pdf.

Google Scholar

[9] A.V. Iavarov, V.V. Lalin: Metodika chislennogo opredeleniia soprotivleniia grunta poperechnym peremeshcheniiam magistralnogo truboprovoda s uchetom fizicheskoi nelineinosti, Chislennye metody raschetov v prakticheskoi geotekhnike. –SPBGASU, St. Petersburg (2012).

Google Scholar

[10] A.V. Iavarov, G.S. Kolosova, V.V. Kuroedov: Stress-strain state of buried pipelines, Construction of Unique Buildings and Structures, 1 (2013). pp.1-10.

Google Scholar

[11] A.V. Iavarov: Reaktciia massiva grunta na peremeshcheniia podzemnogo truboprovoda, Tez. Vsemirnogo morskogo tekhnologicheskogo foruma. SPbGMTU, St. Petersburg, (2012) p.78.

Google Scholar

[12] N.I. Vatin, V.V. Dubov, G.P. Petrakov: Implantation of RMD 41-11-2012 Saint-Petersburg «Organization of heating systems in Saint-Petersburg», Construction of Unique Buildings and Structures, 1 (6) (2013) pp.47-64.

Google Scholar

[13] N.I. Vatin, Yu.A. Kurganov, G. P. Petrakov, V. N. Starkov: About the making Regional Methodical Document Designing and installation pipelines for water supply and sewage systems in Saint-Petersburg, (RMD 40-20-2013 Saint-Petersburg), Construction of Unique Buildings and Structures, 1 (16) (2014).

Google Scholar