Object Classification via PCANet and Color Constancy Model

Article Preview

Abstract:

In order to classify the objects in nature images, a model with color constancy and principle component analysis network (PCANet) is proposed. The new color constancy model imitates the functional properties of the HVS from the retina to the double-opponent cells in V1. PCANet can be designed and learned extremely, which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. At last, a SVM is trained to classify the object in the image. The results of experiments demonstrate the potential of the model for object classification in wild color images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

997-1000

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. Evaluating color descriptors for object and scene recognition. TPAMI, 32(9): 1582–1596, 2010. 1, 7.

DOI: 10.1109/tpami.2009.154

Google Scholar

[2] J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong. Locality constrained linear coding for image classification. In CVPR, pages 3360–3367, 2010. 1, 2, 5.

Google Scholar

[3] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV 2010, pages 141–154. 2010. 1, 2.

DOI: 10.1007/978-3-642-15555-0_11

Google Scholar

[4] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categorization. In ICCV 2011, pages 1792–1799, 2011. 1.

DOI: 10.1109/iccv.2011.6126445

Google Scholar

[5] B. Hakan, P. Marco, P. V. Namboodiriz, T. Tinne, Object Classification with Adaptable Regions, 2014CVPR.

Google Scholar

[6] Y. Sun, X. Wang and X. Tang, Deep Convolutional Network Cascade for Facial Point Detection, CVPR (2013).

Google Scholar

[7] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma: PCANet: A Simple Deep Learning Baseline for Image Classification, CoRR abs/1404. 3606 (2014).

DOI: 10.1109/tip.2015.2475625

Google Scholar

[8] S. Gao, K. Yang, C Li, Y Li, A Color Constancy Model with Double-Opponency Mechanisms, ICCV2013.

Google Scholar

[9] A. Vedaldi and B. Fulkerson. VLFeatQ. Wang, Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models, arXiv: 1207. 3538v2 [cs. CV] 23 Apr (2014).

Google Scholar