[1]
The template will number citations consecutively within br Andrews G, On the existence of solutions to the equation , J. Diff. Eq., 1980, 35: 200-231.
Google Scholar
[2]
A. Haraux and E. Zuazua, Decay estimate for some semilinear damped hyperbolic problem. Arch. Rat. Mech. Anal., 1988, 100: 191-206.
DOI: 10.1007/bf00282203
Google Scholar
[3]
Ryo Ikehata, Some remarks on the wave equations with nonlinear Damping and source terms. Nonlinear Analysis, AmT. 1996, 27: 1165-1175.
DOI: 10.1016/0362-546x(95)00119-g
Google Scholar
[4]
G. Todorova, Stable and unstable sets for the Cauch problem for a nonlinear wave equation with nonlinear damping and source term,J. Math. Anal. And App., 1999, 239: 191-206.
DOI: 10.1006/jmaa.1999.6528
Google Scholar
[5]
M. Nakao, Bounded , periodic and almost periodic classical solutions of Some nonlinear wave equations with a dissipative term, J. Math. Soc. Japan, 30(1978), 375-394.
DOI: 10.2969/jmsj/03030375
Google Scholar
[6]
M. Nakao and H. Kuwahara, Decay estimates for some semilinear wave equations with degenerate dissipative terms, Funkcialaj Ekvacioj, 30(1987), 135-145.
Google Scholar
[7]
P. Bernner and W. Von Whal, Global classical solutions of nonlinear wave equations, Math.Z., 1981, 176: 87-121.
Google Scholar
[8]
H. Pecher, -Abschatzungen und klassische Losungen fur nichtlinear Wellengleichungen. Math.Z., 1976, 150: 159-183.
Google Scholar
[9]
D.H. Sattinger, On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30(1968), 148-172.
DOI: 10.1007/bf00250942
Google Scholar
[10]
L.E. Payne and D.H. Sattinger , Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22(1975), 273-303.
DOI: 10.1007/bf02761595
Google Scholar
[11]
M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan., 1978 , 30: 747-762.
DOI: 10.2969/jmsj/03040747
Google Scholar
[12]
J. Sather, The existence of a global classical solution of the initial boundary value problem for , Arch. Rational Mech. Anal., 1996 , 22: 292-307.
DOI: 10.1007/bf00285421
Google Scholar
[13]
M. Nakao, bounded, periodic or almost periodic solutions of nonlinear hyperbolic partial differential equations, J. Differential Equations, 1977, 23: 368-386.
DOI: 10.1016/0022-0396(77)90117-6
Google Scholar
[14]
J. L. Lions, quelqes methodes de resolution de problems aux limites Nonlineaires, Dound-Gauthier Villars, Paris, (1969).
Google Scholar