Asymptotic Behavior of Global Solutions for some Nonlinear Wave Equation

Article Preview

Abstract:

In this paper we study the asymptotic behavior of the global solutions to the initial-boundary value problem of the nonlinear wave equation with damping term by applying a difference inequality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1691-1694

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The template will number citations consecutively within br Andrews G, On the existence of solutions to the equation , J. Diff. Eq., 1980, 35: 200-231.

Google Scholar

[2] A. Haraux and E. Zuazua, Decay estimate for some semilinear damped hyperbolic problem. Arch. Rat. Mech. Anal., 1988, 100: 191-206.

DOI: 10.1007/bf00282203

Google Scholar

[3] Ryo Ikehata, Some remarks on the wave equations with nonlinear Damping and source terms. Nonlinear Analysis, AmT. 1996, 27: 1165-1175.

DOI: 10.1016/0362-546x(95)00119-g

Google Scholar

[4] G. Todorova, Stable and unstable sets for the Cauch problem for a nonlinear wave equation with nonlinear damping and source term,J. Math. Anal. And App., 1999, 239: 191-206.

DOI: 10.1006/jmaa.1999.6528

Google Scholar

[5] M. Nakao, Bounded , periodic and almost periodic classical solutions of Some nonlinear wave equations with a dissipative term, J. Math. Soc. Japan, 30(1978), 375-394.

DOI: 10.2969/jmsj/03030375

Google Scholar

[6] M. Nakao and H. Kuwahara, Decay estimates for some semilinear wave equations with degenerate dissipative terms, Funkcialaj Ekvacioj, 30(1987), 135-145.

Google Scholar

[7] P. Bernner and W. Von Whal, Global classical solutions of nonlinear wave equations, Math.Z., 1981, 176: 87-121.

Google Scholar

[8] H. Pecher, -Abschatzungen und klassische Losungen fur nichtlinear Wellengleichungen. Math.Z., 1976, 150: 159-183.

Google Scholar

[9] D.H. Sattinger, On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30(1968), 148-172.

DOI: 10.1007/bf00250942

Google Scholar

[10] L.E. Payne and D.H. Sattinger , Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22(1975), 273-303.

DOI: 10.1007/bf02761595

Google Scholar

[11] M. Nakao, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan., 1978 , 30: 747-762.

DOI: 10.2969/jmsj/03040747

Google Scholar

[12] J. Sather, The existence of a global classical solution of the initial boundary value problem for , Arch. Rational Mech. Anal., 1996 , 22: 292-307.

DOI: 10.1007/bf00285421

Google Scholar

[13] M. Nakao, bounded, periodic or almost periodic solutions of nonlinear hyperbolic partial differential equations, J. Differential Equations, 1977, 23: 368-386.

DOI: 10.1016/0022-0396(77)90117-6

Google Scholar

[14] J. L. Lions, quelqes methodes de resolution de problems aux limites Nonlineaires, Dound-Gauthier Villars, Paris, (1969).

Google Scholar