[1]
British Standard Institute. British Standard 8006 Strengthened / Reinforced Soils and Other Fills. London: British Standard Institute, (1995).
Google Scholar
[2]
Chen, C. Y. and G. R. Martin (2002). Soil-structure interaction for landslide stabilizing piles., Computers and Geotechnics 29(5): 363-386.
DOI: 10.1016/s0266-352x(01)00035-0
Google Scholar
[3]
El Sawwaf, M. (2008). Lateral behavior of vertical pile group embedded in stabilized earth slope., Journal of Geotechnical and Geoenvironmental Engineering 134(7): 1015-1020.
DOI: 10.1061/(asce)1090-0241(2008)134:7(1015)
Google Scholar
[4]
Ellis, E. A., I. K. Durrani, et al. (2010). Numerical modelling of discrete pile rows for slope stability and generic guidance for design., Geotechnique 60(3): 185-195.
DOI: 10.1680/geot.7.00090
Google Scholar
[5]
Jeong, S., J. Lee, et al. (2004). Slip effect at the pile-soil interface on dragload., Computers and Geotechnics 31(2): 115-126.
DOI: 10.1016/j.compgeo.2004.01.009
Google Scholar
[6]
Kourkoulis, R., F. Gelagoti, et al. (2011). Slope Stabilizing Piles and Pile-Groups: Parametric Study and Design Insights., Journal of Geotechnical and Geoenvironmental Engineering 137(7): 663-677.
DOI: 10.1061/(asce)gt.1943-5606.0000479
Google Scholar
[7]
Li Rongjian, Yu Yu-zhen et al. (2008). 3D global stability analysis of unsaturated soil slope reinforced with piles., Rock and Soil Mechanics 29(4): 968-972.
Google Scholar
[8]
Li, S. J., J. Chen, et al. (2011). Analytic solution to soil arching effect and its application based on interaction of slope soil and piles., Materials Research Innovations 15: S578-S581.
DOI: 10.1179/143307511x12858957676876
Google Scholar
[9]
Martin, G. R. and C. Y. Chen (2005). Response of piles due to lateral slope movement., Computers & Structures 83(8-9): 588-598.
DOI: 10.1016/j.compstruc.2004.11.006
Google Scholar
[10]
Ng, C. W. W. and L. M. Zhang (2001). Three-dimensional analysis of performance of laterally loaded sleeved piles in sloping ground., Journal of Geotechnical and Geoenvironmental Engineering 127(6): 499-509.
DOI: 10.1061/(asce)1090-0241(2001)127:6(499)
Google Scholar
[11]
Ng, C. W. W., L. M. Zhang, et al. (2001). Influence of laterally loaded sleeved piles and pile groups on slope stability., Canadian Geotechnical Journal 38(3): 553-566.
DOI: 10.1139/t00-109
Google Scholar
[12]
Wang Qian-kun (2005). Discussion on the soil arching effect and the critical spacing between adjacent anti-slide piles., Journal of Wuhan University of Technology27 (8): 64-67.
Google Scholar
[13]
Xiang Xianchao, Zhang Hua et al. (2011). Soil arching effect of anti-slide piles based on particle flow method., Chinese Journal of Geotechnical Engineering33(3): 386-391.
Google Scholar
[14]
Zhao Minghua, Liao Bin-bin, et al. (2000). Calculation of anti-slide piles spacing based on soil arching effect., Rock and Soil Mechanics31(4): 1211-1216.
Google Scholar
[15]
Zhao Wenbin, Luo Wenqian, et al. (2006). Study on designing system of anti-slide piles based on reliability theory., Rock and Soil Mechanics27(9): 952-957.
Google Scholar
[16]
Fu Shaojun, Chen Shenghong(2004). Feedback analysis of the intake slope of Longtan Hydropower Project,. Int. J. Rock Mech. Min. Sci. 41(3).
DOI: 10.1016/j.ijrmms.2003.12.097
Google Scholar
[17]
Chen S H & Egger P. (1999). Three dimensional elasto-viscoplastic finite element analysis of reinforcement rock masses and its application,. Int. J. for Num. And Anal. Mech. In Geomech. 23(1): 61~78.
DOI: 10.1002/(sici)1096-9853(199901)23:1<61::aid-nag958>3.0.co;2-v
Google Scholar
[18]
People's Republic of China Ministry of water resources. Design code for engineered slopes in water resources and hydropower projects (SL386-2007). Beijing: People's Republic of China Ministry of water resources, (2007).
DOI: 10.29171/azu_acku_pamphlet_td313_a3_j664_2007
Google Scholar