The Sensitivity Levels of the Parameters in SMAR Model

Article Preview

Abstract:

The sensitivity analysis of the parameters is an essential part in the hydrological forecasting. In this paper, based on GLUE method and SMAR model, the scatters of likelihood values of nine parameters in both of Hanzhong and Mumahe basin can be generated. From the scatterplots of the parameters in SMAR model, the sensitivity of parameters can be determined by three levels that are non-sensitive level (LevelI), sensitive level (Level II) and basin-sensitive level (Level III). It is concluded that: the parameters of C, Z, Y, Kg belong to Level I; the parameter of K belongs to Level II; the parameters of H, T, G, N belong to Level III) . It indicates that the problem of redundant parameters exists in SMAR model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-113

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Andrade, M. G. & Fragoso, M. D. & Carneiro, A. A. F. M. A stochastic approach to the flood control problem. Applied Mathematical Modelling, 2001, 25(6): 499-511.

DOI: 10.1016/s0307-904x(00)00064-0

Google Scholar

[2] Beven, K. Prophecy, reality and uncertainty in distributed hydrological modeling. Advances in Water Resources, 1993, 16(1): 41-51.

DOI: 10.1016/0309-1708(93)90028-e

Google Scholar

[3] Beven, K. & Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 1992, 6(3): 279-298.

DOI: 10.1002/hyp.3360060305

Google Scholar

[4] Beven, K. & Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 2001, 249(1-4): 11-29.

DOI: 10.1016/s0022-1694(01)00421-8

Google Scholar

[5] Fazal, M. A. & Imaizumi, M. & Ishida, S. et al. Estimating groundwater recharge using the SMAR conceptual model calibrated by genetic algorithm. Journal of Hydrology, 2005, 303(1-4): 56-78.

DOI: 10.1016/j.jhydrol.2004.08.017

Google Scholar

[6] O'Connell, P. E. & Nash, J. E. & Farrell, J. P. River flow forecasting through conceptual models part II - The Brosna catchment at Ferbane. Journal of Hydrology, 1970, 10(4): 317-329.

DOI: 10.1016/0022-1694(70)90221-0

Google Scholar

[7] Singh, V. P. & Woolhiser, D. A. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 2002, 7(4): 270-292.

DOI: 10.1061/(asce)1084-0699(2002)7:4(270)

Google Scholar

[8] Zhan, C. & Song, X. & Xia, J. et al. An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environmental Modelling & Software, 2013, 41: 39-52.

DOI: 10.1016/j.envsoft.2012.10.009

Google Scholar