[1]
S. C, Chuang, Shih F. Y., and. Slack M. R. Machine recognition and representation of neonatal facial displays of acute pain, Artificial Intelligence in Medicine 36(2), 2006, pp.211-222.
DOI: 10.1016/j.artmed.2004.12.003
Google Scholar
[2]
S. Brahnam, C. Chuang, S. S Randal, and Y. S Frank. Machine assessment of neonatal facial expressions of acute pain, Decision Support Systems 43, 2007, pp.1242-125.
DOI: 10.1016/j.dss.2006.02.004
Google Scholar
[3]
S. Brahnam , L. Nanni, and S. Randall. Introduction to neonatal facial pain detection using common and advanced face classification techniques, Advanced Computation Intelligence Paradigms in Healthcare, 1, Studies in Computational Intelligence (SCI) Series: Springer-Verlag, Berlin, 48, 2004, pp.225-253.
DOI: 10.1007/978-3-540-47527-9_9
Google Scholar
[4]
S. Brahnam, F. C Cgao, Y. S Frank, and R. S Melinda. SVM classification of neonatal facial image of pain, Proceedings of the 6th International Workshop on Fuzzy Login and Applications (WILF05).
Google Scholar
[5]
S. Brahnam and L. Nanni , Neonatal facial pain detection using NNSOA and LSVM, Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV08), Las Vegas, vol. 2, 2008, pp.352-357.
Google Scholar
[6]
M. Kirby, and L. Sirovich, (1990). Applications of the Karhunen-Loeve procedure for the characterization of human faces, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp.103-108.
DOI: 10.1109/34.41390
Google Scholar
[7]
S. Brahnam, C. F. Chuang, F. Y. Shih, and M. R. Slack, SVM classification of neonatal facial images of pain, Fuzzy Logic and Applications, Isabelle Bloch, Alfredo Petrosino, Andrea G. B. Tettamanzi, editors, Lecture Notes in Computer Science, 3849, pp.111-115.
DOI: 10.1007/11676935_15
Google Scholar
[8]
K. Pun, and Y. Moon, Recent advances in ear biometrics., pp.144-149, (2004).
Google Scholar
[9]
Jobson, D.J., Rahman, Z., and Woodell, G.A. (1997). Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, Vol. 6, No. 3, pp.451-462.
DOI: 10.1109/83.557356
Google Scholar
[10]
Pallabi, P., and Thuraisingham, B. (2006). Face Recognition using Multiple Classifiers, Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06) pp.179-186.
DOI: 10.1109/ictai.2006.59
Google Scholar
[11]
C. Rafael Gonzalez, E. Richard Woods and L. Steven Eddins. Digital Image Processing using MATLAB. Pearson Education. ISBN 978-81-7758-898-9, (2004).
Google Scholar
[12]
B. Schwerin, and K. K. Paliwal, Local-DCT features for facial recognition, In Proc. Intern. Conf. Signal Proc. and Communication Systems, Gold Coast, Australia, Dec (2008).
DOI: 10.1109/icspcs.2008.4813751
Google Scholar
[13]
C. Sanderson , Automatic Person Verification Using Speech & Face Information, Dissertation presented to School of Microelectronic Engineering, Griffith University, (2002).
Google Scholar
[14]
R. Kohavi . A study of cross-validation and bootstrap for accuracy estimation and model selection, In Paper presented at the14th International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, (1995).
Google Scholar
[15]
Ahmed, N., Natarajan, T., and Rao, K.R. (1974). On image processing and a discrete cosine transform. IEEE Transactions on Computers C-23(1): pp.90-93.
DOI: 10.1109/t-c.1974.223784
Google Scholar
[16]
Chen, W.H., and Pratt, W.K. (1984). Scene adaptive coder. IEEE Transactions on Communications COM-32: pp.225-232.
DOI: 10.1109/tcom.1984.1096066
Google Scholar