Computing the Medical Image Registration Using Meta-Heuristics

Article Preview

Abstract:

The image registration is a very important task in image processing. In the field of medical imaging, it is used to compare the anatomical structures of two or more images taken at different time to track for example the evolution of a disease. Intensity-based techniques are widely used in the multi-modal registration. To have the best registration, a cost function expressing the similarity between these images is maximized. The registration problem is reduced to the optimization of a cost function. We propose to use neighborhood meta-heuristics (tabu search, simulated annealing) and a meta-heuristic population (genetic algorithms). An evaluation step is necessary to estimate the quality of registration obtained. In this paper we present some results of medical image registration

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-242

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Andrey P: Segmentation d'images par algorithmes génétiques, PhD Thesis, Paris 7 University, France, (1999).

Google Scholar

[2] Harik G.R., Lobo F.G. & Goldberg D. E: The compact genetic algorithm, IEEE World Congress on Computational Intelligence, pp.523-528, May (1998).

DOI: 10.1109/icec.1998.700083

Google Scholar

[3] Holland J. H: Adaptation in natural and artificial systems, Michigan University Press, (1975).

Google Scholar

[4] Johan D: Métaheuristiques pour l'optimisation difficile, Eyrolles Edition, France, (2003).

Google Scholar

[5] Juan D., Tang S., Jiang T. & Lu Z: Intensity–based robust similarity for multimodal image registration, International Journal of Computer Mathematics, vol. 83, n° 1, Jan. 2006, pp.49-57.

DOI: 10.1080/00207160500112944

Google Scholar

[6] Kirkpatrick S., Gelatt C.D. & Vecchi M. P: Optimisation by simulated annealing, Science, volume 220, numéro 4598, pp.671-680, (1983).

DOI: 10.1126/science.220.4598.671

Google Scholar

[7] Li W. & Leung H: A maximum likelihood approach for image registration using control point and intensity, IEEE Trans. on Image Processing, vol. 13, Issue 8, pp.1115-1127, August (2004).

DOI: 10.1109/tip.2004.828435

Google Scholar

[8] Mendonca R.S. & Caloba L. P: New simulated annealing algorithms, proceedings ISCAS '97 vol. 3, pp.1668-1671.

Google Scholar

[9] Miramond B: Méthodes d'optimisation pour le partitionnement logiciel/matériel de systèmes à description multi-modèles, PhD Thesis, Evry University, France, Décembre (2003).

Google Scholar

[10] Musse O., Heitz F. & Armspatch J. P: Topology preserving deformable image matching using constrained hierarchical parametric models, International Conf. On Image Processing, vol. 1, pp.505-508, Sep. (2000).

DOI: 10.1109/icip.2000.901006

Google Scholar

[11] Salomon A: Etude de la parallélisation de méthodes heuristiques d'optimisation combinatoire : application au recalage d'images médicales, PhD Thesis, Louis Pasteur University, Strasbourg, France, Décembre (2001).

Google Scholar

[12] Talbi H., Dra A. & Batouche M: A new quantum inspired genetic algorithm for solving the salesman problem, IEEE international Conf. On Industrial Technology, 8-10 December 2004, vol. 3, pp.1192-1197.

DOI: 10.1109/icit.2004.1490730

Google Scholar

[13] Zitova B. & Flusser J: Image registration methods: a survey, Image and Vision Computing 21 (2003) 977–1000.

DOI: 10.1016/s0262-8856(03)00137-9

Google Scholar