Research on Signal Detection in Linear Frequency Modulation Model

Article Preview

Abstract:

In order to conduct signal detection in linear frequency modulation model, using Bayes Criterion, Neyman-Pearson criterion, Minimum error probability criterion and Maximum likelihood criterion. The experimental results show that: Neyman-Pearson criterion is a special case of the alternative Bayes detection; maximum posteriori probability criterion and minimum error probability criterion are equivalent; if equal prior probability, then the maximum a posteriori probability criterion and the maximum likelihood detection have the same probability. So in the actual operation, select appropriate criterion based on the specific conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1294-1297

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abatzoglou T. Fast Maximum Likelihood Joint Estimation of Frequency and Frequency Rate[J]. IEEE Trans on AES, 1986, 22(6): 708-715.

DOI: 10.1109/taes.1986.310805

Google Scholar

[2] Liang R M, Arun K s. Parameter Estimation for Superimposed Chirp Signals[C]IEEE International Conference 0n ASSP, San Francisco, 1992: 273—276.

DOI: 10.1109/icassp.1992.226517

Google Scholar

[3] Jimeng Li, et al. Adaptive stochastic resonance method for impact signal detection based on sliding window[J]. Mechanical Systems &amp Signal Processing, 2013, 36(2): 240-255.

DOI: 10.1016/j.ymssp.2012.12.004

Google Scholar

[4] Paffenroth, et al. Space-Time Signal Processing for Distributed Pattern Detection in Sensor Networks[J]. IEEE journal of selected topics in signal processing, 2013, 7(1): 38-49.

DOI: 10.1109/jstsp.2012.2237381

Google Scholar

[5] Pawlak, M, Steland, A. Nonparametric Sequential Signal Change Detection Under Dependent Noise[J]. IEEE Transactions on Information Theory, 2013, 59(6): 3514-3531.

DOI: 10.1109/tit.2013.2243200

Google Scholar

[6] Que, X., Liu, et al. Molecular Imprint for Electrochemical Detection of Streptomycin Residues Using Enzyme Signal Amplification[J]. Electroanalysis, 2013, 25(2): 531-537.

DOI: 10.1002/elan.201200468

Google Scholar