Semiconductor Quantum Dot Photodetector for High Speed Space Optical Communication

Article Preview

Abstract:

Space optical communication has become a promising application as a real-time and high-speed data rate in the near future. In this paper consider into account the cut off frequency of the photodetector in the space optical communication. We analyze an appropriate quantum dot infrared photodetector for high speed response. The analysis shows PN junction structure photodiode with the wide as d in the absorption window should be designed carefully to achieve both high sensitivity and high speed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1456-1458

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xin Li, Jing Ma, Siyuan Yu, et al. Focal Plane Array Detector Design in the Presence of Vibration for Intersatellite Optical Communications[J]. Optik-international Journal for Light and Electron Optics, 2012, 124(14): 1948-(1951).

DOI: 10.1016/j.ijleo.2012.05.026

Google Scholar

[2] J. Ma,M. Li,L. Y. Tan, et al. Space Radiation Effect on Edfa for Inter-satellite Optical Communication[J]. Optik, 2010, 121(6): 535-538.

DOI: 10.1016/j.ijleo.2008.09.009

Google Scholar

[3] Vincent WS Chan. Optical Satellite Networks[J]. Journal of Lightwave Technology, 2003, 21(11): 2811.

Google Scholar

[4] Lingyu Wan, Liren Liu, Jianfeng Sun. On-ground Simulation of Optical Links for Free-space Laser Communications[J]. Optik-international Journal for Light and Electron Optics, 2010, 121(3): 263-267.

DOI: 10.1016/j.ijleo.2008.07.002

Google Scholar

[5] C-C Chen, Chester S Gardner. Impact of Random Pointing and Tracking Errors on the Design of Coherent and Incoherent Optical Intersatellite Communication Links[J]. Communications, Ieee Transactions on, 1989, 37(3): 252-260.

DOI: 10.1109/26.20099

Google Scholar

[6] Vincent WS Chan. Optical Space Communications[J]. Selected Topics in Quantum Electronics, Ieee Journal of, 2000, 6(6): 959-975.

Google Scholar

[7] Vincent WS Chan. Free-space Optical Communications[J]. Lightwave Technology, Journal of, 2006, 24(12): 4750-4762.

DOI: 10.1109/jlt.2006.885252

Google Scholar

[8] Bruce Moision, Janet Wu, Shervin Shambayati. An Optical Communications Link Design Tool for Long-term Mission Planning for Deep-space Missions[Z]. 2012: 1-12.

DOI: 10.1109/aero.2012.6187102

Google Scholar

[9] P.V. Gatenby, M.A. Grant. Optical intersatellite links[Z]. 1991: 280-288.

Google Scholar

[10] Ali Mir, Vahid Ahmadi. Design and Analysis of a Quantum Dot Infrared Photodetector for Low Ber Free Space Optical Communication[Z]. 2011: 1-5.

Google Scholar

[11] Tetsuya Asano, Anupam Madhukar, Krishnamurthy Mahalingam, et al. Dark Current and Band Profiles in Low Defect Density Thick Multilayered Gaas/inas Self-assembled Quantum Dot Structures for Infrared Detectors[J]. Journal of Applied Physics, 2008, 104(11): 113115-113115.

DOI: 10.1063/1.3039799

Google Scholar

[12] C Negi, S Gupta, D Kumar, et al. Theoretical Analysis of Resonant Cavity P-type Quantum Dot Infrared Photodetector[J]. IEEE Journal of Quantum Electronics, 2013, 49(10): 839-845.

DOI: 10.1109/jqe.2013.2279566

Google Scholar

[13] Hamid Hemmati. Interplanetary Laser Communications and Precision Ranging[J]. Laser & Photonics Reviews, 2011, 5(5): 697-710.

DOI: 10.1002/lpor.201000040

Google Scholar