[1]
Z. Pawlak. Rough classification. International Journal of Human-Computer Studies 51 (1999), pp.369-383.
Google Scholar
[2]
Z. Pawlak. Rough classification. International Journal of Man-Machine Studies 20 (1984), pp.469-483.
DOI: 10.1016/s0020-7373(84)80022-x
Google Scholar
[3]
Z. Pawlak. Rough sets. International Journal of Computer & Information Sciences 11 (1982), pp.341-356.
Google Scholar
[4]
Y. Xu, L.S. Li, and X.J. Li. Generalized Rough Set Model Based on Set Pair Connection Degree. in Control Conference, 2007. CCC 2007. Chinese, (2007).
DOI: 10.1109/chicc.2006.4347103
Google Scholar
[5]
Z. Xiaohong, and Y. Gang. Generalized Rough Set Model on De Morgan Algebras. in IEEE International Conference on Granular Computing, 2007. GRC 2007., (2007).
DOI: 10.1109/grc.2007.21
Google Scholar
[6]
S. Trabelsi, Z. Elouedi, and P. Lingras. Classification systems based on rough sets under the belief function framework. International Journal of Approximate Reasoning 52 (2011), pp.1409-1432.
DOI: 10.1016/j.ijar.2011.08.002
Google Scholar
[7]
K. Kaneiwa. A rough set approach to multiple dataset analysis. Applied Soft Computing 11 (2011), pp.2538-2547.
DOI: 10.1016/j.asoc.2010.08.021
Google Scholar
[8]
S. Liang, H. Chong-Zhao, D. Ning, and S. Jian-Jing. Feature Selection Based on Bhattacharyya Distance: A Generalized Rough Set Method. in The Sixth World Congress on Intelligent Control and Automation, 2006. WCICA 2006., (2006).
DOI: 10.1109/wcica.2006.1713976
Google Scholar
[9]
S. Liang, H. Chongzhao, and L. Ming. Knowledge discovery-based multiple classifier fusion: a generalized rough set method. in 9th International Conference on Information Fusion, 2006, (2006).
DOI: 10.1109/icif.2006.301558
Google Scholar
[10]
L. Zhengcai, and Q. Zheng. Rule Extraction from Incomplete Decision System Based on Novel Dominance Relation. in 4th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2011, (2011).
DOI: 10.1109/icinis.2011.46
Google Scholar
[11]
S. Parsons, M. Kubat, and M. Dohnal. A rough set approach to reasoning under uncertainty. Journal of Experimental & Theoretical Artificial Intelligence 7 (1995), pp.175-193.
DOI: 10.1080/09528139508953805
Google Scholar
[12]
S. Parsons, and M. Kubat. A 1st-order logic for reasoning under uncertainty using rough sets. Journal of Intelligent Manufacturing 5 (1994), pp.211-223.
DOI: 10.1007/bf00123694
Google Scholar
[13]
J.H. Dai, W.T. Wang, Q. Xu, and H.W. Tian. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy. Knowledge-Based Systems 27 (2012), pp.443-450.
DOI: 10.1016/j.knosys.2011.10.013
Google Scholar
[14]
L. Yunxiang, C. Yan, and Y. Xinxin. Study of Metrics System for Information Fusion Evaluation Methodology Based on Rough Set Theory in Intelligent Decision-Making. 2010International Conference on Management and Service Science (MASS 2010) (2010).
DOI: 10.1109/icmss.2010.5578398
Google Scholar
[15]
A. Skowron, and P. Wasilewski. Toward interactive rough-granular computing*. Control and Cybernetics (2011), pp.213-235.
Google Scholar
[16]
A. Skowron, J. Stepaniuk, and R. Swiniarski. Approximation Spaces in Rough-Granular Computing. Fundamenta Informaticae (2010), pp.141-157.
DOI: 10.3233/fi-2010-267
Google Scholar
[17]
Y. Xiaoping, T. Yong, J. Yongjie, X. Jun, and B. Yong. Incomplete information systems based on the set values of attributes. in The 8th International Conference on Computer Supported Cooperative Work in Design, 2004. Proceedings., (2004).
DOI: 10.1109/cacwd.2004.1349288
Google Scholar
[18]
W. Wei-Zhi, and X. Yon-Hong. On two types of generalized rough set approximations in incomplete information systems. in IEEE International Conference on Granular Computing, 2005 , (2005).
DOI: 10.1109/grc.2005.1547290
Google Scholar
[19]
L. Guilong. A comparison of two types of generalized rough sets. in IEEE International Conference on Granular Computing (GrC), 2011, (2011).
DOI: 10.1109/grc.2011.6122634
Google Scholar
[20]
I. Yanto, P. Vitasari, T. Herawan, and M.M. Deris. Applying variable precision rough set model for clustering student suffering study's anxiety. Expert Systems with Applications 39 (2012), pp.452-459.
DOI: 10.1016/j.eswa.2011.07.036
Google Scholar
[21]
W. Wei-Zhi. Knowledge acquisition in incomplete information systems based on variable precision rough set model. in Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005., (2005).
DOI: 10.1109/icmlc.2005.1527318
Google Scholar
[22]
M. Zhang, C. Jia-Xing, and W. Hong-Jun. The research on the classification of the incomplete information system. in Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004., (2004).
DOI: 10.1109/icmlc.2004.1380485
Google Scholar
[23]
M. Kryszkiewicz. Rules in incomplete information systems. Information Sciences 113 (1999), pp.271-292.
DOI: 10.1016/s0020-0255(98)10065-8
Google Scholar
[24]
P. Luukka. Feature selection using fuzzy entropy measures with similarity classifier. Expert Systems with Applications 38 (2011), pp.4600-4607.
DOI: 10.1016/j.eswa.2010.09.133
Google Scholar
[25]
H. Tian, and H. Rybinski. A New Approach to Computing Weighted Attributes Values in Incomplete Information Systems. in ICHIT '06. International Conference on Hybrid Information Technology, 2006., (2006).
DOI: 10.1109/ichit.2006.253622
Google Scholar
[26]
H. Bing, G. Ling, and Z. Xian-zhong. Approximation Reduction Based on Similarity Relation. in Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007., (2007).
DOI: 10.1109/fskd.2007.191
Google Scholar
[27]
A. Skowron, and Z. Pawlak. Rough sets: Some extensions. Information Sciences 177 (2007), pp.28-40.
DOI: 10.1016/j.ins.2006.06.006
Google Scholar
[28]
Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang. An efficient accelerator for attribute reduction from incomplete data in rough set framework. Pattern Recognition 44 (2011), pp.1658-1670.
DOI: 10.1016/j.patcog.2011.02.020
Google Scholar
[29]
D.Q. Miao, Y. Zhao, Y.Y. Yao, H.X. Li, and F.F. Xu. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model. Information Sciences 179 (2009), pp.4140-4150.
DOI: 10.1016/j.ins.2009.08.020
Google Scholar
[30]
E. Xu, T. Shao-Cheng, W. Yuan, X. Shang, and L. Peng. Approach to Missing Data Recovery. in International Symposium on Electronic Commerce and Security, 2008, (2008).
Google Scholar
[31]
M. Kryszkiewicz. Rough set approach to incomplete information systems. Information Sciences 112 (1998), pp.39-49.
DOI: 10.1016/s0020-0255(98)10019-1
Google Scholar
[32]
B.K. Patra, and S. Nandi. Fast Single-Link Clustering Method Based on Tolerance Rough Set Model, Springer-Verlag Berlin, Berlin (2009).
Google Scholar
[33]
J. Tang, K. She, and W. Zhu. A new type of covering-based rough fuzzy set model. Control and Decision 27 (2012), pp.1653-1662.
Google Scholar
[34]
J. Tang, K. She, F. Zhu, and K. Li. Covering-based rough set model based on set-valued mapping. Computer Engineering and Applications 47 (2011), pp.30-34.
Google Scholar
[35]
B. Huang, H.X. Li, and D.K. Wei. Dominance-based rough set model in intuitionistic fuzzy information systems. Knowledge-Based Systems 28 (2012), pp.115-123.
DOI: 10.1016/j.knosys.2011.12.008
Google Scholar
[36]
Z. Rong, L. Bin, and L. Sifeng. A Multi-attribute Auction Model by Dominance-based Rough Sets Approach. Computer Science and Information Systems 7 (2010), pp.843-858.
DOI: 10.2298/csis090804025r
Google Scholar
[37]
M. Kryszkiewicz. Generalized rules in incomplete information systems. Foundations of Intelligent Systems. 10th International Symposium, ISMIS '97. Proceedings (1997), pp.421-430.
Google Scholar
[38]
M. Kryszkiewicz. Generation of rules from incomplete information systems. Principles of Data Mining and Knowledge Discovery 1263 (1997), pp.156-166.
DOI: 10.1007/3-540-63223-9_115
Google Scholar
[39]
Y. Qian, J. Liang, D. Li, F. Wang, and N. Ma. Approximation reduction in inconsistent incomplete decision tables. Knowledge-Based Systems 23 (2010), pp.427-433.
DOI: 10.1016/j.knosys.2010.02.004
Google Scholar
[40]
J.C. Xu, and L. Sun. Knowledge Entropy and Feature Selection in Incomplete Decision Systems. Applied Mathematics & Information Sciences 7 (2013), pp.829-837.
DOI: 10.12785/amis/070255
Google Scholar
[41]
Z. Rong, and E.A. Hansen. Breadth-first heuristic search. Artificial Intelligence 170 (2006), pp.385-408.
DOI: 10.1016/j.artint.2005.12.002
Google Scholar
[42]
T.A. Akanmu, S.O. Olabiyisi, E.O. Omidiora, C.A. Oyeleye, M.A. Mabayoje, and A.O. Babatunde. Comparative study of complexities of breadth-first search and depth-first search algorithms using software complexity measures. Proceedings of the World Congress on Engineering 2010. WCE 2010 (2010).
Google Scholar
[43]
G. Nandi. An enhanced approach to Las Vegas Filter (LVF) feature selection algorithm. Proceedings 2011 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS 2011) (2011), 3 pp. -3 pp.
DOI: 10.1109/ncetacs.2011.5751392
Google Scholar