Adjacent Vertex Distinguishing Distance Coloring of Grids

Article Preview

Abstract:

A-distance coloringof is said to be adjacent vertex distinguishing if this coloring satisfy for any pair of adjacent vertices and in, wheredenotes the set of colors that are received by the vertex and all neighbors of with respect to. The minimum number of colors necessary to adjacent vertex distinguishing-distance color, is denoted by. In this paper, we give the exact values of forand, where denotes the-dimensional grid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2416-2418

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Fertin, E. Godard and A. Raspaud : Acyclic and k-distance coloring of the grid. Information Processing Letters, 87, 51-58 (2003).

DOI: 10.1016/s0020-0190(03)00232-1

Google Scholar

[2] J. P. Georges and D. M. Mauro: Generalized vertex labelings with a condition at distance two, Congr. Numer., 109, 141-159 (1995).

Google Scholar

[3] J. R. Griggs and R. K. Yeh: Labelling graphs with a condition at distance 2, SIAM J. Discrete Math., 5, 586-595(1992).

DOI: 10.1137/0405048

Google Scholar

[4] J. Heuvel and S. McGuinness: Coloring the square of a planar graph, J. Graph Theory, 42, 110-124 (2003).

DOI: 10.1002/jgt.10077

Google Scholar

[5] S. Jendrol and Z. Skupień: Local structures in plane maps and distance colorings, Discrete Math., 236, 167-177 (2001).

DOI: 10.1016/s0012-365x(00)00440-4

Google Scholar

[6] D. S. Kim, D. Z. Du and P. M. Pardalos: A coloring problem on the -cube. Discrete Applied Math., 103, 307-311 (2000).

DOI: 10.1016/s0166-218x(99)00249-8

Google Scholar

[7] F. Kramer and H. Kramer: Ein farbungsproblem der knotenpunkte eines graphen bezuglich der distanz, P. Rev. Roumaine Math. Pures Appl. 14, 1031-1038(1969).

Google Scholar

[8] F. Kramer and H. Kramer: A survey on the distance-coloring of graphs. Discrete Math., 308, 422-426 (2008).

DOI: 10.1016/j.disc.2006.11.059

Google Scholar