Linear Motion Control of an Underactuated Spherical Mobile Robot

Article Preview

Abstract:

Due to the nonholonomic and underactutated properties of spherical robot, to realize its steady motion control is usually difficult. This paper presents a linear motion control method for an underactuated spherical robot. The linear motion dynamic model of the spherical robot is deduced with Euler-Lagrange method, which is a second order, nonlinear differential system with two coupled variables. Without any linearization a single-input multiple-output PID controller to realize the position control and pendulum angle control simultaneously is designed. Simulation results about the position stabilization and path tracking control are provided separately to show the control effects of the proposed controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

351-355

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Joshi, V. A., Banavar, R. N., Hippalgaonkar, R. Design and analysis of a spherical mobile robot[J]. Mechanism and Machine Theory, 2010: 45 (2): 130-136.

DOI: 10.1016/j.mechmachtheory.2009.04.003

Google Scholar

[2] Li Z. X., Canny J. Motion of two rigid bodies with rolling constraint[J]. IEEE Transactions on Robotics and Automation, 1990: 6(1): 62-72.

DOI: 10.1109/70.88118

Google Scholar

[3] Halme A., Schonberg T., Wang Y. Motion control of a spherical mobile robot[C]. Proceedings of IEEE International Conference on Advanced Motion Control, Mie, Japan. 1996. 259-264.

DOI: 10.1109/amc.1996.509415

Google Scholar

[4] Javadi A. H. A. , Mojabi P. Introducing August: a novel strategy for an omnidirectional spherical rolling robot [C]. Proceedings of IEEE International Conference on Robotics and Automation, Washington, USA. 2002. 3527-3533.

DOI: 10.1109/robot.2002.1014256

Google Scholar

[5] Vrunda A. Joshi , Ravi N. Banavar. Motion analysis of a spherical mobile robot[J]. Robotica, 2009: 27: 343–353.

DOI: 10.1017/s0263574708004748

Google Scholar

[6] Das T. , Mukherjee R. Exponential stabilization of the rolling sphere[J]. Automatica, 2004: 40(11): 1877-1889.

DOI: 10.1016/j.automatica.2004.06.003

Google Scholar

[7] Das T. , Mukherjee R. Reconfiguration of a rolling sphere: a problem in evolute-involute geometry[J]. ASME Journal of Applied Machanics, 2006: 73(4): 590-597.

DOI: 10.1115/1.2164515

Google Scholar

[8] Bhattacharya S. , Agrawal S. K. Spherical rolling robot: a design and motion planning studies[J]. IEEE Transactions on Robotics and Automation, 2000: 16(6): 835-839.

DOI: 10.1109/70.897794

Google Scholar

[9] Antonio B., Andrea B., Domenico P. , Andrea G. Introducing the SPHERICAL,: an experimental tested for research and teaching in nonholonomy[C]. Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA. 1997. 2620-2625.

Google Scholar

[10] Antonio B., Alessia M. A local-local planning algorithm for rolling objects[C]. Proceedings of IEEE Conference on Robotics and Automation, Washingtong, USA. 2002. 1759-1764.

Google Scholar

[11] Liu D. L., Sun H. X., Jia Q. X. A family of spherical mobile robot: Driving ahead motion control by feedback linearization[C]. Proceedings of IEEE International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China. 2008. 1-6.

DOI: 10.1109/isscaa.2008.4776275

Google Scholar

[12] Kishida Y., Omatu S. Fujinaka T., Yoshioka M. Neuro-PID control for stabilization of inverted single and double Pendulums[C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Tokyo, Japan. 1999. 1108-1112.

DOI: 10.1109/icsmc.1999.812565

Google Scholar