Optimization of Quantum Dot Infrared Photodetectors Based on Noise Model

Article Preview

Abstract:

As an important property of the quantum dot infrared photodetector, the noise has attracted extensive attention. In this paper, the model for the noise of the QDIP is built. This model takes the total electron transport and the dependence of the drift velocity of electrons on the electric field into account. The corresponding calculated results not only show a good agreement with the published results, but also illustrate the dependence of the noise on the structure which can provide us with a method used to optimize the structure of the detector devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4107-4111

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Peter Vines, Chee Hing Tan, John P. R. David, Ram S. Attaluri, Thomas Edwin Vandervelde, and Sanjay Krishna. Noise, Gain, and Responsivity in Low-Strain Quantum Dot Infrared Photodetectors with up to 80 Dot-in-a-Well Periods[J]. IEEE Journal of quantum electronics. 2011 47 (5) 607-613.

DOI: 10.1109/jqe.2011.2107732

Google Scholar

[2] Chung-Chi Liao, Shiang-Feng Tang, Tzu-Chiang Chen, Cheng-Der Chiang, San-Te Yang, Wen-Kuan Su. Electronic Characteristics of Doped InAs/GaAs Quantum Dot Photodetector: Temperature Dependent Dark Current and Noise Density[C]. Proc. Of SPIE 2006 6119 611905-1-7.

DOI: 10.1117/12.644422

Google Scholar

[3] Zhengmao Ye and Joe C. Campbell, Zhonghui Chen, Eui-Tae Kim, and Anupam Madhukar, Noise and photoconductive gain in InAs quantum-dot infrared photodetectors[J]. Applied physics letters. 2003 83 (611) 1234-1236.

DOI: 10.1063/1.1597987

Google Scholar

[4] H.C. Liu. Quantum dot infrared photodetector[J]. Opto-electronics Review. 2003 11 1–5.

Google Scholar

[5] H.C. Liu. Quantum well infrared photodetector physics and novel devices[J]. Semiconductors and Semimetals. 2002 62 126-196.

DOI: 10.1016/s0080-8784(08)60306-3

Google Scholar

[6] H. Liu, J. Zhang. Physical model for the dark current of quantum dot infrared photodetectors[J]. Optics and Laser Technology. 2012 44 1536-1542.

DOI: 10.1016/j.optlastec.2011.12.004

Google Scholar

[7] H. Liu, J. Zhang, Dark current and noise analyses of quantum dot infrared photodetectors[J]. Applied Optics. 2012. 51 (14) 2767-2771.

DOI: 10.1364/ao.51.002767

Google Scholar

[8] A. Carbone, R. Introzzi, H.C. Liu. Photo and dark current in self-assembled quantum dot infrared photodetectors[J]. Infrared Physics and Technology. 2009 52 257-260.

DOI: 10.1016/j.infrared.2009.09.003

Google Scholar

[9] H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi. Gain and recombination dynamics of quantum-dot infrared photodetectors[J]. Physical Review B. 2006 74, 205321-1-205321-8.

DOI: 10.1103/physrevb.74.205321

Google Scholar

[10] Hongmei Liu, Chunhua Yang, YunLong Shi. Dark current Model of Quantum Dot Infrared Photodetectors based on the influence of the drift velocity of the electrons[J]. Applied Mechanics and Materials. (2014) 556-562: 2141-2144.

DOI: 10.4028/www.scientific.net/amm.556-562.2141

Google Scholar

[11] P. Martyniuk, A. Rogalski. Insight into performance of quantum dot infrared photodetectors[J]. Bulletin the Polish Academy of Sciences: Technical Scinences. 2009 57; 103-116.

DOI: 10.2478/v10175-010-0111-6

Google Scholar

[12] G. Satyanadh, R. P. Joshi, N. Abedin and U. Singh. Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs[J]. Journal of applied physics. 2002 91: 1331-1338.

DOI: 10.1063/1.1429771

Google Scholar

[13] X. Lu and J. Vaillancourt. Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector[J]. Appllied Physics Letter. 2007 91 051115.

DOI: 10.1063/1.2766655

Google Scholar