[1]
Y. yang, X.D. Zhang, An Internet-based Product Customization System for CIM, Vol. 21 (2005) No. 2, p.109.
Google Scholar
[2]
Pfister A, Walz U, Laib A, Mulhaupt R. Polymer, Ionomers for Rapid Prototyping and Rapid Manufacturing by Means of 3D Printing, Vol. 290(2009), p.99.
DOI: 10.1002/mame.200400282
Google Scholar
[3]
Zżewski J, Burzyński P, Gaweł K, Meisner J, Rapid Prototyping of Electrically Conductive Components Using 3D Printing Technology, Vol. 209(2009), p.5281.
DOI: 10.1016/j.jmatprotec.2009.03.015
Google Scholar
[4]
Okaday LA, Kang KH, Colangelo NW, Cheung PYC, Duan B, Malone E, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT, Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds, Vol. 4 (2012).
DOI: 10.1088/1758-5082/4/3/035005
Google Scholar
[5]
Ekers B, Gülkan H, Irsen SH, Milz S, Tille C, Seitz H, Schieker M. Biocompatibility of Ceramic Scaffolds for Bone Replacement made by 3D Printing., Vol. 36(2005), p.787.
DOI: 10.1002/mawe.200500968
Google Scholar
[6]
Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Seitz H, Schieker M. Biocompatibility of Ceramic Scaffolds for Bone Replacement made by 3D Printing., Vol. 36(2005), p.787.
DOI: 10.1002/mawe.200500968
Google Scholar
[7]
Kang J, Kim H, Ryu J, Thomas HH, Jang S, Joung J, Inkjet Printed Electronics Using Copper Nanoparticle Ink, Vol. 21(2010), p.1213.
DOI: 10.1007/s10854-009-0049-3
Google Scholar