Identification of Important Proteins in Protein Interaction Network Based on SVM

Article Preview

Abstract:

Importance of proteins are different to perform functions of cells in living organisms according to the relevant experiment results, and more essential proteins is the most important kind of proteins. There are recently many computational approaches proposed to predict essential proteins in network level through network topologies combined with biological information of proteins. However it is still hard to identify them because of limitations of topological centralities and bioinformatic sources. And more it is the challenge is to perform better with less resources. Therefore in this paper, we first examine the correlation between common topological centralities and essential proteins and choose a few particular centralities, and then to build a SVM model, names as TC-SVM, for predicting the essential proteins. The new method has been applied to a yeast protein interaction networks, which are obtained from the BioGRID database. The ten folds experimental results show that the performance of predicting essential proteins by TC-SVM is excellent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5202-5206

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. Lethality and centrality in protein networks, Nature, 411(6833), pp.41-42, (2001).

DOI: 10.1038/35075138

Google Scholar

[2] Giaever, G., Chu, A. M., Ni, L., Connelly, etc. Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418(6896), pp.387-391, (2002).

Google Scholar

[3] Joy, M. P., Brock, A., Ingber, D. E., and Huang, S. High-Betweenness Proteins in the Yeast Protein Interaction Network, Journal of Biomedicine and Biotechnology, (2005).

DOI: 10.1155/jbb.2005.96

Google Scholar

[4] Watts, D. J., and Strogatz, S. H. Collective dynamics of 'small-world' networks, Nature, 393(6684), pp.440-442, (1998).

DOI: 10.1038/30918

Google Scholar

[5] Wuchty, S., and Stadler, P. F. Centers of complex networks, Journal of Theoretical Biology, 223(1), pp.45-53, (2003).

DOI: 10.1016/s0022-5193(03)00071-7

Google Scholar

[6] Lin, C. -Y., Chin, C. -H., Wu, H. -H., Chen, S. -H., Ho, C. -W., and Ko, M. -T. Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology, Nucleic acids research, 36(suppl 2), pp. W438-W443, (2008).

DOI: 10.1093/nar/gkn257

Google Scholar

[7] Wang, H., Li, M., Wang, J., and Pan, Y. A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient, Bioinformatics Research and Applications, J. Chen, J. Wang, and A. Zelikovsky, eds., Springer Berlin Heidelberg, pp.87-98, (2011).

DOI: 10.1007/978-3-642-21260-4_12

Google Scholar

[8] Li, M., Wang, J., Chen, X., Wang, H., and Pan, Y. A local average connectivity-based method for identifying essential proteins from the network level, Computational biology and chemistry, 35(3), pp.143-150, (2011).

DOI: 10.1016/j.compbiolchem.2011.04.002

Google Scholar

[9] Estrada, E., and Rodríguez-Velázquez, J. A. Subgraph centrality in complex networks, Physical Review E, 71(5), p.056103, (2005).

DOI: 10.1103/physreve.71.056103

Google Scholar

[10] Bonacich, P. Power and Centrality: A Family of Measures, American Journal of Sociology, 92(5), pp.1170-1182, (1987).

DOI: 10.1086/228631

Google Scholar

[11] Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, ACM, Pittsburgh, Pennsylvania, USA, pp.144-152, (1992).

DOI: 10.1145/130385.130401

Google Scholar

[12] Cortes, C., and Vapnik, V. Support-vector networks, Mach Learn, 20(3), pp.273-297, (1995).

DOI: 10.1007/bf00994018

Google Scholar

[13] Stark, C., Breitkreutz, B. -J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., Nixon, J., Van Auken, K., Wang, X., Shi, X., Reguly, T., Rust, J. M., Winter, A., Dolinski, K., and Tyers, M. The BioGRID Interaction Database: 2011 update, Nucleic acids research, 39(suppl 1), pp. D698-D704, (2011).

DOI: 10.1093/nar/gkq1116

Google Scholar

[14] Mewes, H. W., Frishman, D., Mayer, K. F. X., Münsterkötter, M., Noubibou, O., Pagel, P., Rattei, T., Oesterheld, M., Ruepp, A., and Stümpflen, V. MIPS: analysis and annotation of proteins from whole genomes in 2005, Nucleic acids research, 34(suppl 1), pp. D169-D172, (2006).

DOI: 10.1093/nar/gkj148

Google Scholar

[15] Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., Hester, E. T., Jia, Y., Juvik, G., Roe, T., Schroeder, M., Weng, S., and Botstein, D. SGD: Saccharomyces Genome Database, Nucleic acids research, 26(1), pp.73-79, (1998).

DOI: 10.1093/nar/27.1.74

Google Scholar

[16] Zhang, R., and Lin, Y. DEG 5. 0, a database of essential genes in both prokaryotes and eukaryotes, Nucleic acids research, 37(suppl 1), pp. D455-D458, (2009).

DOI: 10.1093/nar/gkn858

Google Scholar

[17] Winzeler, E. A., Shoemaker, D. D., Astromoff, A., etc. Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, 285(5429), pp.901-906, (1999).

Google Scholar

[18] Chang, C. -C., and Lin, C. -J. LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., 2(3), pp.1-27, (2011).

DOI: 10.1145/1961189.1961199

Google Scholar