[1]
Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. Lethality and centrality in protein networks, Nature, 411(6833), pp.41-42, (2001).
DOI: 10.1038/35075138
Google Scholar
[2]
Giaever, G., Chu, A. M., Ni, L., Connelly, etc. Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418(6896), pp.387-391, (2002).
Google Scholar
[3]
Joy, M. P., Brock, A., Ingber, D. E., and Huang, S. High-Betweenness Proteins in the Yeast Protein Interaction Network, Journal of Biomedicine and Biotechnology, (2005).
DOI: 10.1155/jbb.2005.96
Google Scholar
[4]
Watts, D. J., and Strogatz, S. H. Collective dynamics of 'small-world' networks, Nature, 393(6684), pp.440-442, (1998).
DOI: 10.1038/30918
Google Scholar
[5]
Wuchty, S., and Stadler, P. F. Centers of complex networks, Journal of Theoretical Biology, 223(1), pp.45-53, (2003).
DOI: 10.1016/s0022-5193(03)00071-7
Google Scholar
[6]
Lin, C. -Y., Chin, C. -H., Wu, H. -H., Chen, S. -H., Ho, C. -W., and Ko, M. -T. Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology, Nucleic acids research, 36(suppl 2), pp. W438-W443, (2008).
DOI: 10.1093/nar/gkn257
Google Scholar
[7]
Wang, H., Li, M., Wang, J., and Pan, Y. A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient, Bioinformatics Research and Applications, J. Chen, J. Wang, and A. Zelikovsky, eds., Springer Berlin Heidelberg, pp.87-98, (2011).
DOI: 10.1007/978-3-642-21260-4_12
Google Scholar
[8]
Li, M., Wang, J., Chen, X., Wang, H., and Pan, Y. A local average connectivity-based method for identifying essential proteins from the network level, Computational biology and chemistry, 35(3), pp.143-150, (2011).
DOI: 10.1016/j.compbiolchem.2011.04.002
Google Scholar
[9]
Estrada, E., and Rodríguez-Velázquez, J. A. Subgraph centrality in complex networks, Physical Review E, 71(5), p.056103, (2005).
DOI: 10.1103/physreve.71.056103
Google Scholar
[10]
Bonacich, P. Power and Centrality: A Family of Measures, American Journal of Sociology, 92(5), pp.1170-1182, (1987).
DOI: 10.1086/228631
Google Scholar
[11]
Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, ACM, Pittsburgh, Pennsylvania, USA, pp.144-152, (1992).
DOI: 10.1145/130385.130401
Google Scholar
[12]
Cortes, C., and Vapnik, V. Support-vector networks, Mach Learn, 20(3), pp.273-297, (1995).
DOI: 10.1007/bf00994018
Google Scholar
[13]
Stark, C., Breitkreutz, B. -J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., Nixon, J., Van Auken, K., Wang, X., Shi, X., Reguly, T., Rust, J. M., Winter, A., Dolinski, K., and Tyers, M. The BioGRID Interaction Database: 2011 update, Nucleic acids research, 39(suppl 1), pp. D698-D704, (2011).
DOI: 10.1093/nar/gkq1116
Google Scholar
[14]
Mewes, H. W., Frishman, D., Mayer, K. F. X., Münsterkötter, M., Noubibou, O., Pagel, P., Rattei, T., Oesterheld, M., Ruepp, A., and Stümpflen, V. MIPS: analysis and annotation of proteins from whole genomes in 2005, Nucleic acids research, 34(suppl 1), pp. D169-D172, (2006).
DOI: 10.1093/nar/gkj148
Google Scholar
[15]
Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., Hester, E. T., Jia, Y., Juvik, G., Roe, T., Schroeder, M., Weng, S., and Botstein, D. SGD: Saccharomyces Genome Database, Nucleic acids research, 26(1), pp.73-79, (1998).
DOI: 10.1093/nar/27.1.74
Google Scholar
[16]
Zhang, R., and Lin, Y. DEG 5. 0, a database of essential genes in both prokaryotes and eukaryotes, Nucleic acids research, 37(suppl 1), pp. D455-D458, (2009).
DOI: 10.1093/nar/gkn858
Google Scholar
[17]
Winzeler, E. A., Shoemaker, D. D., Astromoff, A., etc. Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, 285(5429), pp.901-906, (1999).
Google Scholar
[18]
Chang, C. -C., and Lin, C. -J. LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., 2(3), pp.1-27, (2011).
DOI: 10.1145/1961189.1961199
Google Scholar