[1]
<Elemental Sulfur Oxidation by Thiobacillus spp. and Aerobic Heterotrophic Sulfur-Oxidizing Bacteria-main. pdf>.
DOI: 10.1016/s1002-0160(09)60284-8
Google Scholar
[2]
Boman A, Åström M, Fröjdö S. Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide—The role of artificial drainage. ChemicalGeology 2008, 255: 68-77.
DOI: 10.1016/j.chemgeo.2008.06.006
Google Scholar
[3]
Sun Z, Mou X, Song H, Jiang H. Sulfur biological cycle of the different Suaeda salsa marshes in the intertidal zone of the Yellow River estuary, China. Ecological Engineering 2013, 53: 153-164.
DOI: 10.1016/j.ecoleng.2012.12.036
Google Scholar
[4]
Tanikawa T, Yamashita N, Aizawa S, Ohnuki Y, Yoshinaga S, Takahashi M. Soil sulfur content and its spatial distribution in a small catchment covered by volcanic soil in the montane zone of central Japan. Geoderma 2013, 197-198: 1-8.
DOI: 10.1016/j.geoderma.2012.12.017
Google Scholar
[5]
Wiessner A, Rahman KZ, Kuschk P, Kastner M, Jechorek M. Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage. Water Res 2010, 44: 6175-6185.
DOI: 10.1016/j.watres.2010.07.044
Google Scholar
[6]
Wu S, Jeschke C, Dong R, Paschke H, Kuschk P, Knoller K. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment. Water Res 2011, 45: 6688-6698.
DOI: 10.1016/j.watres.2011.10.008
Google Scholar
[7]
Lin C, Wu L, Wu Y. Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination. Australian Journal of Soil Research . (2005).
DOI: 10.1071/sr04148
Google Scholar
[8]
Li He-Cheng, Wang Yu-Ping, An interpolation based genetic algorithm for sloving nonlinear bilevel programming problems. Chinese Journal of Computers, 31(6), pp.910-918, June (2008).
DOI: 10.3724/sp.j.1016.2008.00910
Google Scholar
[9]
Fernandez R O, Cervera J V G, Vanderlinden K et al. Temporal and spatial monitoring of the pH and heavy metals in a soil polluted by mine spill: Post cleaning effects. Water Air and Soil Pollution . (2007).
DOI: 10.1007/s11270-006-9193-z
Google Scholar
[10]
Macklin M G, Brewer P A, Balteanu D et al. The long term fate and environmental significance of contaminant metals released by the January and March2000mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Applied Geochemistry . (2003).
DOI: 10.1016/s0883-2927(02)00123-3
Google Scholar
[11]
Gurung S R, Stewart R B, Gregg P E H et al. An assessment of requirements of neutralising materials of partially oxidised pyritic mine waste. Australian Journal of Soil Research . (2000).
DOI: 10.1071/sr99049
Google Scholar
[12]
Ningjing Hu, Zeqin Li, Peng Huang, Cheng Tao. Distribution and mobility of metals in agricultural soils near a copper smelter in South China [J]. Environmental Geochemistry and Health. 2006 (1-2).
DOI: 10.1007/s10653-005-9007-z
Google Scholar
[13]
Chusi Li, Zhanghua Xu, Sybrand A. Waal, Edward M. Ripley, Wolfgang D. Maier. Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis[J]. Mineralium Deposita . 2004 (2).
DOI: 10.1007/s00126-003-0389-5
Google Scholar
[14]
P. Heikkinen,K. Korkka-Niemi,M. Lahti,V. -P. Salonen. Groundwater and surface water contamination in the area of the Hitura nickel mine, Western Finland[J]. Environmental Geology. 2002 (4).
DOI: 10.1007/s00254-002-0525-z
Google Scholar