Study on the Present Condition and it’S Key Technique to Prospect of the High Frequency Resonance Transform Using in Electrostatic Dust Separator

Article Preview

Abstract:

This text make a detailed introduction and comparative analysis on the type , the work mode, analysis and design method, and control method...etc of the high frequency resonance transform machine to the current electrostatic dust separator and at the same time it also make a tally up the problem that the key wants to work out.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-130

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jun Liu, Licheng Sheng , et al. LCC Resonant Converter Operating under Discontinuous Resonant Current Mode in High Voltage, High Power and High Frequency Applications[C]. APEC2009, Twenty-Fourth Annual IEEE. 2009: 1482-1486.

DOI: 10.1109/apec.2009.4802862

Google Scholar

[2] Heqing Zhong, Zhixin Xu, Xudong Zou, el al. Current Characteristic of High Voltage Capacitor charging Power Supply Using a Series Resonant Topology[C]. in Conference Proceedings of IECON'03, vol. 1, pp.373-377, 2-6 November. (2003).

DOI: 10.1109/iecon.2003.1280009

Google Scholar

[3] Soeiro Thiago, Biela Jürgen, et al. Optimal Design of Resonant Converter for Electrostatic Precipitators[C]. APEC 2010, Twenty-Fifth Annual IEEE, 2010: 2294-2301.

DOI: 10.1109/ipec.2010.5543691

Google Scholar

[4] Ivensky Gregory, Kats Arkadiy, et al. An RC load model of parallel and series-parallel resonant DC-DC converters with capacitive output filter [J]. IEEE Transactions on Power Electronics, 1999, 14(3): 515-521.

DOI: 10.1109/63.761695

Google Scholar

[5] Forsyth Andrew J, Ward Gillian A, and Mollov Stefan V. Extended fundamental frequency analysis of the LCC Resonant converter [J]. IEEE Transactions on Power Electronics, 2003, 18(6): 1286-1291.

DOI: 10.1109/tpel.2003.818826

Google Scholar

[6] Bhat Ashoka K.S. Analysis and Design of a Series-Parallel Resonant Converter with Capacitive Output Filter [J]. IEEE Transactions on Industry Applications, 1991,27(3):523-530.

DOI: 10.1109/28.81837

Google Scholar

[7] Batarseh I, Lie R, el al. Theoretical and Experimental Studies of the LCC Type Parallel Resonant Converter [J]. IEEE Transactions on Power Electonics, 1990, 5(2):140-150.

DOI: 10.1109/63.53151

Google Scholar

[8] R. Oruganti and F.C. Lee, Resonant power processors: Part Ⅰ-State plane analysis[C]. IEEE-IAS Annual Meeting, 1984: 860-867.

Google Scholar

[9] Man K.F. Genetic algorithms: concepts and applications[J]. IEEE Transactions on Industry Applications, 1996,43(5):519-534.

Google Scholar

[10] Vasconcelos J. A, Ramirez J. A K, et al. Improvements in genetic algorithms[J]. IEEE Transactions on Magnetics, 2001,37(5):3414-3417.

Google Scholar

[11] Batarseh I, Megalemos C, el al. Small signal analysis of the LCC-type parallel resonant converter[J]. IEEE Transactions on Aerospace and Electronic system, 1996,32(2):702-713.

DOI: 10.1109/7.489513

Google Scholar

[12] R. Oruganti and F.C. Lee, Resonant power processors: Part Ⅱ-Methods of control [J]. IEEE Transactions on Industry Applications, 1985, 21(6): 1461-1471.

DOI: 10.1109/tia.1985.349603

Google Scholar

[13] Chen H, Sng E.K. K, and Tseng K.J. Generalized optimal trajectory control for closed loop control of series-parallel resonant converter[C]. 35th Annual IEEE Power Electronics Specialists Conference, 2004, 4: 1786-1791.

DOI: 10.1109/pesc.2004.1355386

Google Scholar

[14] Chen H, and Tseng K.J. Optimal trajectory switching control for series-parallel resonant converter[C]. IEEE IECON, Nov. 2003, 2: 1986-(1991).

Google Scholar