[1]
O.S. Arvaniti, E.I. Ventouri, A.S. Stasinakis, N.S. Thomaidis, Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid–water distribution coefficients, J. Hazard. Mater., 239-240 (2012).
DOI: 10.1016/j.jhazmat.2012.02.015
Google Scholar
[2]
A. Pistocchi, R. Loos, A map of European emissions and concentrations of PFOS and PFOA, Environ. Sci. Technol., 43 (2009) 9237-9244.
DOI: 10.1021/es901246d
Google Scholar
[3]
F. Wang, W. Liu, Y. Jin, J. Dai, W. Yu, X. Liu, L. Liu, Transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain, Environ. Sci. Technol., 44 (2010) 1847-1853.
DOI: 10.1021/es902799f
Google Scholar
[4]
I. Rodea-Palomares, F. Leganés, R. Rosal, F. Fernández-Piñas, Toxicological interactions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) with selected pollutants, J. Hazard. Mater., 201-202 (2012) 209-218.
DOI: 10.1016/j.jhazmat.2011.11.061
Google Scholar
[5]
J.P. Giesy, K. Kannan, Perfluorochemical surfactants in the environment, Environ. Sci. Technol., 36 (2002) 146A.
DOI: 10.1021/es022253t
Google Scholar
[6]
H. Hori, E. Hayakawa, H. Einaga, S. Kutsuna, K. Koike, T. Ibusuki, H. Kiatagawa, R. Arakawa, Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches, Environ. Sci. Technol., 38 (2004) 6118-6124.
DOI: 10.1021/es049719n
Google Scholar
[7]
H.F. Schröder, R.J.W. Meesters, Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection–mass spectrometry, liquid chromatography–mass spectrometry and liquid chromatography–multiple stage mass spectrometry, J. Chromatogr. A, 1082 (2005).
DOI: 10.1016/j.chroma.2005.02.070
Google Scholar
[8]
C.S. Liu, C.P. Higgins, F. Wang, K. Shih, Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water, Sep. Purif. Technol., 91 (2012) 46-51.
DOI: 10.1016/j.seppur.2011.09.047
Google Scholar
[9]
C.S. Liu, K. Shih, F. Wang, Oxidative decomposition of perfluorooctanesulfonate in water by permanganate, Sep. Purif. Technol., 87 (2012) 95-100.
DOI: 10.1016/j.seppur.2011.11.027
Google Scholar
[10]
Q. Zhuo, S. Deng, B. Yang, J. Huang, G. Yu, Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode, Environ. Sci. Technol., 45 (2011) 2973-2979.
DOI: 10.1021/es1024542
Google Scholar
[11]
H. Hori, Y. Nagaoka, T. Sano, S. Kutsuna, Iron-induced decomposition of perfluorohexanesulfonate in sub-and supercritical water, Chemosphere, 70 (2008) 800-806.
DOI: 10.1016/j.chemosphere.2007.07.015
Google Scholar
[12]
J. Cheng, C.D. Vecitis, H. Park, B.T. Mader, M.R. Hoffmann, Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects, Environ. Sci. Technol., 42 (2008).
DOI: 10.1021/es8013858
Google Scholar
[13]
S.C. Panchangam, A.Y.C. Lin, K.L. Shaik, C.F. Lin, Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium, Chemosphere, 77 (2009) 242-248.
DOI: 10.1016/j.chemosphere.2009.07.003
Google Scholar
[14]
Y. Wang, P. Zhang, Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid, J. Hazard. Mater., 192 (2011) 1869-1875.
DOI: 10.1016/j.jhazmat.2011.07.026
Google Scholar
[15]
K. Yasuoka, K. Sasaki, R. Hayashi, An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles, Plasma Sour. Sci. Technol., 20 (2011) 034009.
DOI: 10.1088/0963-0252/20/3/034009
Google Scholar
[16]
Y. Qu, C. Zhang, F. Li, J. Chen, Q. Zhou, Photo-reductive defluorination of perfluorooctanoic acid in water, Water Res., 44 (2010) 2939-2947.
DOI: 10.1016/j.watres.2010.02.019
Google Scholar