Photocatalytic Degradation of Hydrofluorocarbon under Visible Light Irradiation

Article Preview

Abstract:

Hydrofluorocarbons are difficult to remove from the water environment due to their inertness to photolysis, hydrolysis, and biodegradation. In the study, the rapid decomposition of hydrofluorocarbons was found in the presence of bismuth oxide as a photocatalyst under visible light irradiation. Compared with nanoTiO2 and direct photolysis, the photocatalysis by bismuth oxide can remove hydrofluorocarbons more efficiently under visible light irradiation (λ > 420 nm). The effects of temperature, pH, and initial hydrofluorocarbons concentration on the photocatalytic decomposition rates were investigated. Based on the detection of reactive radicals, photocatalytic reduction by hydrated electron was determined as the major degradation route. The detailed defluorination pathway was also proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1357-1360

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.S. Arvaniti, E.I. Ventouri, A.S. Stasinakis, N.S. Thomaidis, Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid–water distribution coefficients, J. Hazard. Mater., 239-240 (2012).

DOI: 10.1016/j.jhazmat.2012.02.015

Google Scholar

[2] A. Pistocchi, R. Loos, A map of European emissions and concentrations of PFOS and PFOA, Environ. Sci. Technol., 43 (2009) 9237-9244.

DOI: 10.1021/es901246d

Google Scholar

[3] F. Wang, W. Liu, Y. Jin, J. Dai, W. Yu, X. Liu, L. Liu, Transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain, Environ. Sci. Technol., 44 (2010) 1847-1853.

DOI: 10.1021/es902799f

Google Scholar

[4] I. Rodea-Palomares, F. Leganés, R. Rosal, F. Fernández-Piñas, Toxicological interactions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) with selected pollutants, J. Hazard. Mater., 201-202 (2012) 209-218.

DOI: 10.1016/j.jhazmat.2011.11.061

Google Scholar

[5] J.P. Giesy, K. Kannan, Perfluorochemical surfactants in the environment, Environ. Sci. Technol., 36 (2002) 146A.

DOI: 10.1021/es022253t

Google Scholar

[6] H. Hori, E. Hayakawa, H. Einaga, S. Kutsuna, K. Koike, T. Ibusuki, H. Kiatagawa, R. Arakawa, Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches, Environ. Sci. Technol., 38 (2004) 6118-6124.

DOI: 10.1021/es049719n

Google Scholar

[7] H.F. Schröder, R.J.W. Meesters, Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection–mass spectrometry, liquid chromatography–mass spectrometry and liquid chromatography–multiple stage mass spectrometry, J. Chromatogr. A, 1082 (2005).

DOI: 10.1016/j.chroma.2005.02.070

Google Scholar

[8] C.S. Liu, C.P. Higgins, F. Wang, K. Shih, Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water, Sep. Purif. Technol., 91 (2012) 46-51.

DOI: 10.1016/j.seppur.2011.09.047

Google Scholar

[9] C.S. Liu, K. Shih, F. Wang, Oxidative decomposition of perfluorooctanesulfonate in water by permanganate, Sep. Purif. Technol., 87 (2012) 95-100.

DOI: 10.1016/j.seppur.2011.11.027

Google Scholar

[10] Q. Zhuo, S. Deng, B. Yang, J. Huang, G. Yu, Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode, Environ. Sci. Technol., 45 (2011) 2973-2979.

DOI: 10.1021/es1024542

Google Scholar

[11] H. Hori, Y. Nagaoka, T. Sano, S. Kutsuna, Iron-induced decomposition of perfluorohexanesulfonate in sub-and supercritical water, Chemosphere, 70 (2008) 800-806.

DOI: 10.1016/j.chemosphere.2007.07.015

Google Scholar

[12] J. Cheng, C.D. Vecitis, H. Park, B.T. Mader, M.R. Hoffmann, Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects, Environ. Sci. Technol., 42 (2008).

DOI: 10.1021/es8013858

Google Scholar

[13] S.C. Panchangam, A.Y.C. Lin, K.L. Shaik, C.F. Lin, Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium, Chemosphere, 77 (2009) 242-248.

DOI: 10.1016/j.chemosphere.2009.07.003

Google Scholar

[14] Y. Wang, P. Zhang, Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid, J. Hazard. Mater., 192 (2011) 1869-1875.

DOI: 10.1016/j.jhazmat.2011.07.026

Google Scholar

[15] K. Yasuoka, K. Sasaki, R. Hayashi, An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles, Plasma Sour. Sci. Technol., 20 (2011) 034009.

DOI: 10.1088/0963-0252/20/3/034009

Google Scholar

[16] Y. Qu, C. Zhang, F. Li, J. Chen, Q. Zhou, Photo-reductive defluorination of perfluorooctanoic acid in water, Water Res., 44 (2010) 2939-2947.

DOI: 10.1016/j.watres.2010.02.019

Google Scholar