Preparation and Performance of Mesoporous Carbon-SnO2-Sb Composite Electrode

Article Preview

Abstract:

The composite electrode, formed by SnO2-Sb as catalyst agent, mesoporous carbon (MC) and polytetrafluoroethylene (PTFE), was prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption analyses. It has a high BET surface area of 184 m2 g-1 with a narrow pore distribution centered at 6.2 nm. The phenol removal of 96.3 % was achieved with the composite electrode in the electrochemical oxidation of aqueous phenol wastes after 80 min electrolysis while it was only 84.1 % for the SnO2-Sb electrode. The removal of chemical oxygen demand (COD) was 62.9 % on the composite electrode which was also higher than that on the SnO2-Sb electrode (38.3 %).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1361-1364

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Wu, W. Wen, Catalyzed degradation of azo dyes under ambient conditions, Environ. Sci. Technol. 44 (2010) 9123-9127.

DOI: 10.1021/es1027234

Google Scholar

[2] D. Rajkumar, K. Palanivelu, Electrochemical degradation of cresols for wastewater treatment, Ind. Eng. Chem. Res. 42 (2003) 1833-1839.

DOI: 10.1021/ie020759e

Google Scholar

[3] D.A. Saltmiras, A.T. Lemley, Degradation of ethylene thiourea (ETU) with three fenton treatment processes, J. Agric. Food Chem. 48 (2000) 6149-6157.

DOI: 10.1021/jf000084v

Google Scholar

[5] K. Vinodgopal, I. Bedja, P.V. Kamat, Nanostructured semiconductor films for photocatalysis. photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye, Chem. Mater. 8 (1996).

DOI: 10.1021/cm950425y

Google Scholar

[5] J.H. Chang, T.J. Yang, C.H. Tung, Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater, J. Hazard. Mater. 163 (2009) 152-157.

DOI: 10.1016/j.jhazmat.2008.06.072

Google Scholar

[6] C.L.P.S. Zanta, P.A. Michaud, C. Comninellis, A.R.D. Andrade, J.F.C. Boodts, Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment. J. Appl. Electrochem, 33 (2003) 1211-1215.

DOI: 10.1023/b:jach.0000003863.13587.b7

Google Scholar

[7] J.F. Zhi, H.B. Wang, T. Nakashima, T.N. Rao, A. Fujishima, Electrochemical incineration of organic pollutants on boron-doped diamond electrode. evidence for direct electrochemical oxidation pathway, J. Phys. Chem. B 107( 2003) 13389-13395.

DOI: 10.1021/jp030279g

Google Scholar

[8] P. Duverneuil, F. Maury, N. Pebere, F. Senocq, H. Vergnes, Chemical vapor deposition of SnO2 coatings on Ti plates for the preparation of electrocatalytic anodes, Surf. Coat. Technol. 151-152 (2002) 9-13.

DOI: 10.1016/s0257-8972(01)01618-8

Google Scholar

[9] Q.F. Zhuo, S.B. Deng, B. Yang, J. Huang, G. Yu, Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode, Environ. Sci. Technol. 45 (2011) 2973-2979.

DOI: 10.1021/es1024542

Google Scholar

[10] M.E. Makgae, M.J. Klink, A.M. Crouch, Performance of sol-gel titanium mixed metal oxide electrodes for electro-catalytic oxidation of phenol, Appl. Catal. B: Environ. 84 (2008) 659-666.

DOI: 10.1016/j.apcatb.2008.05.021

Google Scholar

[11] P.D. Yao, X.M. Chen, H. Wu, D.H. Wang, Active Ti/SnO2 anodes for pollutants oxidation prepared using chemical vapor deposition, Surf. Coat. Technol. 202 (2008) 3850-3855.

DOI: 10.1016/j.surfcoat.2008.01.026

Google Scholar

[12] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Appl. Chem. 57 (1985).

DOI: 10.1515/iupac.57.0013

Google Scholar